摘要:20. 设F1, F2分别为椭圆的左右两个交点. (1) 若椭圆C上的点到F1, F2两点的距离之和等于4, 写出椭圆C的方程和焦点坐标; (2) 设点K是(1)中所得椭圆上的动点,求线段的中点的轨迹方程; (3) 已知椭圆具有性质: M,N是椭圆C上关于原点对称的两个点, 点P是椭圆上任意一点,当直线PM, PN的斜率都存在,并记为,时,那么与之积是与点P位置无关的定值.试对双曲线写出类似的性质,并给以证明.
网址:http://m.1010jiajiao.com/timu3_id_513500[举报]
(本小题满分14分)
设椭圆
的左、右焦点分别为F1、F2,上顶点为A,离心率e=
,在x轴负半轴上有一点B,且
.
(Ⅰ)若过A、B、F2三点的圆恰好与直线
相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点F2作斜率为k的直线
与椭圆C交于M、N两点,在x轴上是否存在点p(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.
本小题满分14分)
已知椭圆
的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且
的最小值不小于
。
(1)证明:椭圆上的点到F2的最短距离为
;
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2与
轴的右交点为Q,过点Q作斜率为
的直线
与椭圆相交于A、B两点,若OA⊥OB,求直线
被圆F2截得的弦长S的最大值。
查看习题详情和答案>>
本小题满分14分)
已知椭圆
(1)证明
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2与