摘要:二项式系数的对称性,
网址:http://m.1010jiajiao.com/timu3_id_511821[举报]
“杨辉三角”与二项式系数的性质
(1)对称性:在(a+b)n的展开式中,_________的两项的二项式系数相等.
(2)增减性与最大值:当r<
时,二项式系数是逐渐_________的,由对称性可知它的后半部分是逐渐_________的,且在中间取到最大值.当n是偶数时,中间一项的二项式系数_________取得最大值;当n是奇数时,中间两项的二项式系数_________相等,且同时取到最大值.
在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:cnm=Cnn-m.
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.
查看习题详情和答案>>
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.
在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:cnm=Cnn-m.
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.
查看习题详情和答案>>
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.