摘要:20.给定有限个正数满足条件T:每个数都不大于50且总和L=1275.现将这些数按下列要求进行分组.每组数之和不大于150且分组的步骤是: 首先.从这些数中选择这样一些数构成第一组.使得150与这组数之和的差r1与所有可能的其他选择相比是最小的.r1称为第一组余差, 然后.在去掉已选入第一组的数后.对余下的数按第一组的选择方式构成第二组.这时的余差为r2,如此继续构成第三组(余差为r3).第四组(余差为r4).-.直至第N组(余差为rN)把这些数全部分完为止. ⑴判断的大小关系.并指出除第N组外的每组至少含有几个数 ⑵当构成第n组后.指出余下的每个数与的大小关系.并证明 ⑶对任何满足条件T的有限个正数.证明:
网址:http://m.1010jiajiao.com/timu3_id_509993[举报]
给定有限个正数满足条件T:每个数都不大于50且总和L=1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r1与所有可能的其他选择相比是最小的,r1称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r2;如此继续构成第三组(余差为r3)、第四组(余差为r4)、…,直至第N组(余差为rN)把这些数全部分完为止.
(Ⅰ)判断r1,r2,…,rN的大小关系,并指出除第N组外的每组至少含有几个数;
(Ⅱ)当构成第n(n<N)组后,指出余下的每个数与rn的大小关系,并证明rn-1>
;
(Ⅲ)对任何满足条件T的有限个正数,证明:N≤11. 查看习题详情和答案>>
(Ⅰ)判断r1,r2,…,rN的大小关系,并指出除第N组外的每组至少含有几个数;
(Ⅱ)当构成第n(n<N)组后,指出余下的每个数与rn的大小关系,并证明rn-1>
| 150n-L | n-1 |
(Ⅲ)对任何满足条件T的有限个正数,证明:N≤11. 查看习题详情和答案>>
给定有限个正数满足条件T:每个数都不大于50且总和L=1 275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:?
首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r1与所有可能的其他选择相比是最小的,r1称为第一组余差;?
然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r2;如此继续构成第三组(余差为r3)、第四组(余差为r4)、…,直至第N组(余差为rn)把这些数全部分完为止.?
(1)判断r1,r2,…,rn的大小关系,并指出除第N组外的每组至少含有几个数;?
(2)当构成第n(n<N)组后,指出余下的每个数与rn的大小关系,并证明![]()
(3)对任何满足条件T的有限个正数,证明N≤11.
查看习题详情和答案>>给定有限个正数满足条件T:每个数都不大于50且总和L=1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:
首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r1与所有可能的其他选择相比是最小的,r1称为第一组余差;
然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r2;如此继续构成第三组(余差为r3)、第四组(余差为r4)、…,直至第N组(余差为rN)把这些数全部分完为止.
(I)判断r1,r2,…,rN的大小关系,并指出除第N组外的每组至少含有几个数
(II)当构成第n(n<N)组后,指出余下的每个数与rn的大小关系,并证明rn-1>
(III)对任何满足条件T的有限个正数,证明:N≤11.
查看习题详情和答案>>
首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r1与所有可能的其他选择相比是最小的,r1称为第一组余差;
然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r2;如此继续构成第三组(余差为r3)、第四组(余差为r4)、…,直至第N组(余差为rN)把这些数全部分完为止.
(I)判断r1,r2,…,rN的大小关系,并指出除第N组外的每组至少含有几个数
(II)当构成第n(n<N)组后,指出余下的每个数与rn的大小关系,并证明rn-1>
| 150n-L |
| n-1 |
(III)对任何满足条件T的有限个正数,证明:N≤11.
20.给定有限个正数满足条件T:每个数都不大于50且总和L=1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:
首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r1与所有可能的其他选择相比是最小的,r1称为第一组余差;
然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r2;如此继续构成第三组(余差为r3)、第四组(余差为r4)、…,直至第N组(余差为rN)把这些数全部分完为止.
(Ⅰ)判断r1,r2,…,rN的大小关系,并指出除第N组外的每组至少含有几个数;
(Ⅱ)当构成第n(n<N)组后,指出余下的每个数与rn的大小关系,并证明rn-1>
;
(Ⅲ)对任何满足条件T的有限个正数,证明:N≤11.
查看习题详情和答案>>
给定有限个正数满足条件T:每个数都不大于50且总和L=1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:
首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r1与所有可能的其他选择相比是最小的,r1称为第一组余差;
然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r2;如此继续构成第三组(余差为r3)、第四组(余差为r4)、…,直至第N组(余差为rN)把这些数全部分完为止.
(I)判断r1,r2,…,rN的大小关系,并指出除第N组外的每组至少含有几个数
(II)当构成第n(n<N)组后,指出余下的每个数与rn的大小关系,并证明
(III)对任何满足条件T的有限个正数,证明:N≤11.
查看习题详情和答案>>
首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r1与所有可能的其他选择相比是最小的,r1称为第一组余差;
然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r2;如此继续构成第三组(余差为r3)、第四组(余差为r4)、…,直至第N组(余差为rN)把这些数全部分完为止.
(I)判断r1,r2,…,rN的大小关系,并指出除第N组外的每组至少含有几个数
(II)当构成第n(n<N)组后,指出余下的每个数与rn的大小关系,并证明
(III)对任何满足条件T的有限个正数,证明:N≤11.
查看习题详情和答案>>