摘要:17.已知数列{an}的前n项和为Sn.且an+Sn=1(n∈N*). ⑴求数列{an}的通项公式, ⑵若数列{bn}满足,求的值.
网址:http://m.1010jiajiao.com/timu3_id_508227[举报]
已知数列{an}的前n项和为Sn,且an+1=Sn-n+3,n∈N+,a1=2.
(Ⅰ)求数列{an}的通项;
(Ⅱ)设bn=
(n∈N+)的前n项和为Tn,证明:Tn<
.
查看习题详情和答案>>
(Ⅰ)求数列{an}的通项;
(Ⅱ)设bn=
| n |
| Sn-n+2 |
| 4 |
| 3 |
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn;
(3)设cn=an•bn,求数列{cn}的前n项和Tn. 查看习题详情和答案>>
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn;
(3)设cn=an•bn,求数列{cn}的前n项和Tn. 查看习题详情和答案>>