题目内容

已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn
(3)设cn=an•bn,求数列{cn}的前n项和Tn
分析:(1)先利用an是Sn与2的等差中项把1代入即可求a1,再把2代入即可求a2的值;
(2)利用Sn=2an-2,可得Sn-1=2an-1-2,两式作差即可求数列{an}的相邻两项之间的关系,找到规律即可求出通项;对于数列{bn},直接利用点P(bn,bn+1)在直线x-y+2=0上,代入得数列{bn}是等差数列即可求通项;
(3)先把所求结论代入求出数列{cn}的通项,再利用数列求和的错位相减法即可求出其各项的和.
解答:解:(1)∵an是Sn与2的等差中项
∴Sn=2an-2∴a1=S1=2a1-2,解得a1=2
a1+a2=S2=2a2-2,解得a2=4
(2)∵Sn=2an-2,Sn-1=2an-1-2,
又Sn-Sn-1=an,n≥2
∴an=2an-2an-1
∵an≠0,
an
an-1
=2(n≥2),即数列{an}是等比数列,∵a1=2,∴an=2n
∵点P(bn,bn+1)在直线x-y+2=0上,∴bn-bn+1+2=0,
∴bn+1-bn=2,即数列{bn}是等差数列,又b1=1,∴bn=2n-1,
(3)∵cn=(2n-1)2n
∴Tn=a1b1+a2b2+anbn=1×2+3×22+5×23++(2n-1)2n
∴2Tn=1×22+3×23++(2n-3)2n+(2n-1)2n+1
因此:-Tn=1×2+(2×22+2×23++2×2n)-(2n-1)2n+1
即:-Tn=1×2+(23+24++2n+1)-(2n-1)2n+1
∴Tn=(2n-3)2n+1+6
点评:本题考查了数列求和的错位相减法.错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网