摘要:1.求导法则: (c)/=0 这里c是常数.即常数的导数值为0. (xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ()/=-x-2 /= f/(x)±g//= k•f/(x)
网址:http://m.1010jiajiao.com/timu3_id_507744[举报]
试根据复合函数的求导法则,研究函数f(x)=xx(x>0)的性质,并回答:下列命题中假命题的个数是( )
①f(x)的极大值为1;
②f(x)的极小值为1;
③f(x)的一个单调递增区间是(
,10).
①f(x)的极大值为1;
②f(x)的极小值为1;
③f(x)的一个单调递增区间是(
| 1 |
| 10 |
| A、0 | B、1 | C、2 | D、3 |
请先阅读:
在等式cos2x=2cos2x-1(x∈R)的两边求导,得:(cos2x)′=(2cos2x-1)′,由求导法则,得(-sin2x)•2=4cosx•(-sinx),化简得等式:sin2x=2cosx•sinx.
(1)利用上题的想法(或其他方法),结合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整数n≥2),证明:n[(1+x)n-1-1]=
k
xk-1.
(2)对于正整数n≥3,求证:
(i)
(-1)kk
=0;
(ii)
(-1)kk2
=0;
(iii)
=
.
查看习题详情和答案>>
在等式cos2x=2cos2x-1(x∈R)的两边求导,得:(cos2x)′=(2cos2x-1)′,由求导法则,得(-sin2x)•2=4cosx•(-sinx),化简得等式:sin2x=2cosx•sinx.
(1)利用上题的想法(或其他方法),结合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整数n≥2),证明:n[(1+x)n-1-1]=
| n |
| k=2 |
| C | k n |
(2)对于正整数n≥3,求证:
(i)
| n |
| k=1 |
| C | k n |
(ii)
| n |
| k=1 |
| C | k n |
(iii)
| n |
| k=1 |
| 1 |
| k+1 |
| C | k n |
| 2n+1-1 |
| n+1 |
请先阅读:
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
+
x+
x2+…+
xn(x∈R,整数n≥2),证明:n[(1+x)n-1-1]=2
x+3
x2+4
x3+…+n
xn-1;
(Ⅱ)当整数n≥3时,求
-2
+3
-…+(-1)n-1n
的值;
(Ⅲ)当整数n≥3时,证明:2
-3•2
+4•3
+…+(-1)n-2n(n-1)
=0.
查看习题详情和答案>>
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
| C | 0 n |
| C | 1 n |
| C | 2 n |
| C | n n |
| C | 2 n |
| C | 3 n |
| C | 4 n |
| C | n n |
(Ⅱ)当整数n≥3时,求
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
(Ⅲ)当整数n≥3时,证明:2
| C | 2 n |
| C | 3 n |
| C | 4 n |
| C | n n |