摘要:20. 已知:椭圆 (Ⅰ)若点P是椭圆C内部一点.求证: (Ⅱ)若椭圆上存在不同的两点关于直线对称.试求.满足的关系式. 朝 阳 区 高 三 统 一 练 习(二)
网址:http://m.1010jiajiao.com/timu3_id_506596[举报]
(本小题满分14分)
已知F1,F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的交点,点P关于x轴的对称点记为M.设=λ.
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:=-λ;
(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.
查看习题详情和答案>>
(本小题满分14分)已知点F椭圆E:
的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且
是边长为2的正三角形;又椭圆E上的P、Q两点关于直线
对称.
(1)求椭圆E的方程;(2)当直线
过点(
)时,求直线PQ的方程;
(3)若点C是直线
上一点,且
=
,求
面积的最大值.
![]()
查看习题详情和答案>>
(本小题满分14分)已知点F椭圆E:
的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且
是边长为2的正三角形;又椭圆E上的P、Q两点关于直线
对称.
(1)求椭圆E的方程;(2)当直线
过点(
)时,求直线PQ的方程;
(3)若点C是直线
上一点,且
=
,求
面积的最大值.

(1)求椭圆E的方程;(2)当直线
(3)若点C是直线