摘要:26.如图1.抛物线与x轴交于A.C两点.与y轴交于B点.与直线交于A.D两点.⑴直接写出A.C两点坐标和直线AD的解析式,⑵如图2.质地均匀的正四面体骰子的各个面上依次标有数字-1.1.3.4.随机抛掷这枚骰子两次.把第一次着地一面的数字m记做P点的横坐标.第二次着地一面的数字n记做P点的纵坐标.则点落在图1中抛物线与直线围成区域内的概率是多少?
网址:http://m.1010jiajiao.com/timu3_id_490003[举报]
如图,抛物线与
轴交于
(
、
两点,与
轴交于点
(
设抛物线的顶点为
.
(1)求该抛物线的解析式与顶点
的坐标.
(2)试判断△
的形状,并说明理由.
(3)探究坐标轴上是否存在点
,使得以
为顶点的三角形与△
相似?
若存在,请直接写出点
的坐标;若不存在,请说明理由.
查看习题详情和答案>>
如图,抛物线与
轴交于
、
(6 , 0)两点,且对称轴为直线x = 2,与
轴交于点
。
(1)求抛物线的解析式;
(2)
点
是抛物线对称轴上的一个动点,连接MA、M
C,
当△MAC的周长最小时,求点
的坐标;
(3)点
在(1)中抛物线上,点
为抛物线上一
动点,在
轴上是
否存在点
,使以
为顶点的四边形是平行四边形,如果存在,直接写出所有
满足条件的点
的坐标,若不存在,请说明理由。
查看习题详情和答案>>
如图,抛物线与
轴交于
(
,0)、
(
,0)两点,且
,与
轴交于点
,其中
是方程
的两个根。
(1)求抛物线的解析式;
(2)点
是线段
上的一个动点,过点
作
∥
,交
于点
,连接
,当
的面积最大时,求点
的坐标;
(3)点
在(1)中抛物线上,点
为抛物线上一动点,在
轴上是否存在点
,使以
为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点
的坐标,若不存在,请说明理由。
![]()