摘要:[解析]先建立函数关系式.把它转化为二次函数的一般形式.然后根据二次函数的顶点坐标公式进行求极值. [答案]解:设增种x棵树.果园的总产量为y千克.依题意得:y= =4000 – 25x + 40 x – 0,25x2 = - 0.25 x2 + 15x + 4000 因为a= - 0.25<0.所以当. y有最大值 答:增种30棵枇杷树.投产后可以使果园枇杷的总产量最多.最多总产量是4225千克.
网址:http://m.1010jiajiao.com/timu3_id_478892[举报]
已知:在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.
(1)求直线BC的解析式;
(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的
;
(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请写出S与t的
函数关系式,并指出自变量t的取值范围.
查看习题详情和答案>>
(1)求直线BC的解析式;
(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的
| 2 | 7 |
(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请写出S与t的
已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别是A(8,0),B(8,10),C(0,4),点D(4,7)是CB的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OAB的路线移动,
移动的时间是秒t,设△OPD的面积是S.
(1)求直线BC的解析式;
(2)请求出S与t的函数关系式,并指出自变量t的取值范围;
(3)求S的最大值;
(4)当9≤t<12时,求S的范围. 查看习题详情和答案>>
(1)求直线BC的解析式;
(2)请求出S与t的函数关系式,并指出自变量t的取值范围;
(3)求S的最大值;
(4)当9≤t<12时,求S的范围. 查看习题详情和答案>>
如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD=4,BC=6,AB=3,以BC为x轴,AB为y轴,建立平面直角坐标系xoy.
(1)求过A,C,D三点的抛物线的解析式;
(2)如果一动点P由B点开始沿BC边以1个单位长度/s的速度向点c移动,连接DP,作射线PE⊥DP,PE与直线AB交于点E,当点P移动到第t秒时,点E与点B的距离为s;
①试写出s与t的函数关系式,并写出t的取值范围;
②s是否存在最大值?若存在,直接写出这个最大值,并求出这时PE所在直
线的解析式;若不存在,说明理由.
查看习题详情和答案>>
(1)求过A,C,D三点的抛物线的解析式;
(2)如果一动点P由B点开始沿BC边以1个单位长度/s的速度向点c移动,连接DP,作射线PE⊥DP,PE与直线AB交于点E,当点P移动到第t秒时,点E与点B的距离为s;
①试写出s与t的函数关系式,并写出t的取值范围;
②s是否存在最大值?若存在,直接写出这个最大值,并求出这时PE所在直
如图①,在Rt△AOB中,∠AOB=90°,AB=5,cosA=
.一动点P从点O出发,以每秒1个单位长度的速度沿OB方向匀速运动;另一动点Q从点B出发,以每秒1个单位长度的速度沿BO方向匀速运动.两动点同时出发,当第一次相遇时即停止运动.在点P、Q运动的过程中,以PQ为一边作正方形PQMN,使正方形PQMN和△AOB在线段OB的同侧.设运动时间为t(单位:秒).

(1)求OA和OB的长度;
(2)在点P、Q运动的过程中,设正方形PQMN和△AOB重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;
(3)如图②,现以△AOB的直角边OB为x轴,顶点O为原点建立平面直角坐标系xOy.取OB的中点C,将过点A、C、B的抛物线记为抛物线T.
①求抛物线T的函数解析式;
②设抛物线T的顶点为点D.在点P、Q运动的过程中,设正方形PQMN的对角线PM、QN交于点E,连接DE、DN.是否存在这样的t,使得△DEN是以EN、DE为两腰或以EN、DN为两腰的等腰三角形?若存在,请求出对应的t的值;若不存在,请说明理由.
查看习题详情和答案>>
| 3 | 5 |
(1)求OA和OB的长度;
(2)在点P、Q运动的过程中,设正方形PQMN和△AOB重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;
(3)如图②,现以△AOB的直角边OB为x轴,顶点O为原点建立平面直角坐标系xOy.取OB的中点C,将过点A、C、B的抛物线记为抛物线T.
①求抛物线T的函数解析式;
②设抛物线T的顶点为点D.在点P、Q运动的过程中,设正方形PQMN的对角线PM、QN交于点E,连接DE、DN.是否存在这样的t,使得△DEN是以EN、DE为两腰或以EN、DN为两腰的等腰三角形?若存在,请求出对应的t的值;若不存在,请说明理由.