摘要:7.若是抛物线上的两个点.则它的对称轴是 ( ) A. B. C. D.
网址:http://m.1010jiajiao.com/timu3_id_454374[举报]
已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的
正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为
.
(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由. 查看习题详情和答案>>
| 15 | 2 |
(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由. 查看习题详情和答案>>
已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,已知直线MC的函数表达式为y=kx-3,与x轴的交点为N,且cos∠BCO=
.
(1)求抛物线的解析式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(3)如图2,过点A作x轴的垂线,交直线MC于点Q,若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少单位长度?向下最多可平移多少个单位长度?
查看习题详情和答案>>
3
| ||
| 10 |
(1)求抛物线的解析式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(3)如图2,过点A作x轴的垂线,交直线MC于点Q,若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少单位长度?向下最多可平移多少个单位长度?
已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且点C的坐标为(0,3).
(1)求此抛物线的解析式;
(2)请直接写出直线AC和BC的解析式;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得以PQ为一腰的△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由;
(4)设直线y=kx+2k(k>0)与线段OC交于点D,与(1)中的抛物线交于点E,
若S△CDE=S△AOE,请直接写出点E的坐标.
查看习题详情和答案>>
(1)求此抛物线的解析式;
(2)请直接写出直线AC和BC的解析式;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得以PQ为一腰的△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由;
(4)设直线y=kx+2k(k>0)与线段OC交于点D,与(1)中的抛物线交于点E,