摘要:已知a,b,c是三角形的三边长.且方程(a2+b2+c2)x2+2x+3=0有两个相等的实数根.求证:这个三角形是正三角形
网址:http://m.1010jiajiao.com/timu3_id_451395[举报]
已知a,b,c是△ABC的三边的长,且关于x的方程x2+2(a-b)x-(a2+b2-c2)2=0有两个相等的实数根,那么△ABC是( )
查看习题详情和答案>>
| A.等腰三角形 | B.直角三角形 |
| C.等腰直角三角形 | D.锐角三角形 |
根据一元二次方程根的定义,解答下列问题.
一个三角形两边长分别为3cm和7cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.
解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)
当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周长是3+7+7=17(cm).
上述过程中,第一步是根据
查看习题详情和答案>>
一个三角形两边长分别为3cm和7cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.
解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)
当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周长是3+7+7=17(cm).
上述过程中,第一步是根据
三角形任意两边之和大于第三边,任意两边之差小于第三边
三角形任意两边之和大于第三边,任意两边之差小于第三边
,第二步应用了分类讨论
分类讨论
数学思想,确定a的值的大小是根据方程根的定义
方程根的定义
.