摘要:关于的函数有与轴垂直的切线.则的关系是( )A. B. C. D.
网址:http://m.1010jiajiao.com/timu3_id_4472070[举报]
对于函数,其中a为实常数,已知函数y=f(x)的图象在点(-1,f(-1))处的切线与y轴垂直。
(Ⅰ)求实数的值;
(Ⅱ)若关于的方程有三个不等实根,求实数的取值范围;
(Ⅲ)若函数无零点,求实数的取值范围。
查看习题详情和答案>>
对于函数f(x)=-
x4+
x3+ax2-2x-2,其中a为实常数,已知函数y=f(x)的图象在点(-1,f(-1))处的切线与y轴垂直.
(1)求实数a的值;
(2)若关于x的方程f(3x)=m有三个不等实根,求实数m的取值范围. 查看习题详情和答案>>
1 |
4 |
2 |
3 |
(1)求实数a的值;
(2)若关于x的方程f(3x)=m有三个不等实根,求实数m的取值范围. 查看习题详情和答案>>
下列几个命题,其中正确的命题有
①函数y=log2(x-3)+2的图象可由y=log2x的图象向上平移2个单位,向右平移3个单位得到;
②函数f(x)=
的图象关于点(1,2)成中心对称;
③在区间(0,+∞)上函数y=x
的图象始终在函数y=x的图象上方;
④任一函数图象与垂直于x轴的直线都不可能有两个交点.
查看习题详情和答案>>
①④
①④
.(填写所有正确命题的序号)①函数y=log2(x-3)+2的图象可由y=log2x的图象向上平移2个单位,向右平移3个单位得到;
②函数f(x)=
2x-3 |
x+1 |
③在区间(0,+∞)上函数y=x
1 |
2 |
④任一函数图象与垂直于x轴的直线都不可能有两个交点.
(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
和e2=
.
(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
(θ为参数),C2的参数方程为
(t为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
的定义域为R,求实数m的取值范围.
查看习题详情和答案>>
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
|
|
(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
|
|
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1 |
f(x)+m |