摘要:12.若在(x+1)4(ax-1)2的展开式中.x3的系数是20.则a= .
网址:http://m.1010jiajiao.com/timu3_id_4470283[举报]
(2012•山西模拟)已知函数f(x)=x-1-alnx(a∈R).
(1)若曲线y=f(x)在x=1处的切线方程为3x-y=3,求实数a的值;
(2)若f(x)的值域为[0,+∞),求a的值;
(3)若a<0,对任意x1,x2∈(0,1],且x1≠x2,恒有|f(x1)-f(x2)|<4|
-
|,求实数a的取值范围.
查看习题详情和答案>>
(1)若曲线y=f(x)在x=1处的切线方程为3x-y=3,求实数a的值;
(2)若f(x)的值域为[0,+∞),求a的值;
(3)若a<0,对任意x1,x2∈(0,1],且x1≠x2,恒有|f(x1)-f(x2)|<4|
1 |
x1 |
1 |
x2 |
(2013•铁岭模拟)设函数f(x)=
x2-tx+3lnx,g(x)=
,已知x=a,x=b为函数f(x)的极值点(0<a<b)
(1)求函数g(x)在(-∞,-a)上的单调区间,并说明理由.
(2)若曲线g(x)在x=1处的切线斜率为-4,且方程g(x)-m=0有两个不相等的负实根,求实数m的取值范围.
查看习题详情和答案>>
1 |
2 |
2x+t |
x2-3 |
(1)求函数g(x)在(-∞,-a)上的单调区间,并说明理由.
(2)若曲线g(x)在x=1处的切线斜率为-4,且方程g(x)-m=0有两个不相等的负实根,求实数m的取值范围.
(A)(不等式选做题)
若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是
(B)(几何证明选做题)
如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为
.
(C)(坐标系与参数方程选做题)
在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
查看习题详情和答案>>
若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)
.(B)(几何证明选做题)
如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为
2
| ||
3 |
2
| ||
3 |
(C)(坐标系与参数方程选做题)
在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
2或-8
2或-8
.