摘要:如图1.在矩形AB CD中.AB=20㎝.BC=4㎝.点P从A开始沿折线A-B-C-D以4㎝/s的速度移动.点Q从C开始沿CD边以1㎝/s的速度移动.如果点P.Q分别从A.C同时出发.当其中一点到达D时.另一点也随之停止运动.设运动时间为t(s). (1)t为何值时.四边形APQD为矩形? (2)如图2.如果⊙P和⊙Q的半径都是2㎝.那么t为何值时.⊙P和⊙Q外切?
网址:http://m.1010jiajiao.com/timu3_id_446987[举报]
在探究矩形的性质时,小明得到了一个有趣的结论:矩形两条对角线的平方和等于四条边的平方和.如图1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮对菱形进行了探究,也得到了同样的结论,于是小亮猜想:任意平行四边形两条对角线的平方和等于四条边的平方和.请你解决下列问题:
(1)如图2,已知:四边形ABCD是菱形,求证:AC2+BD2=2(AB2+BC2);
(2)你认为小亮的猜想是否成立,如果成立,请利用图3给出证明;如果不成立,请举反例说明;
(3)如图4,在△ABC中,BC、AC、AB的长分别为a、b、c,AD是BC边上的中线.试求AD的长.(结果用a,b,c表示)
查看习题详情和答案>>
小亮对菱形进行了探究,也得到了同样的结论,于是小亮猜想:任意平行四边形两条对角线的平方和等于四条边的平方和.请你解决下列问题:
(1)如图2,已知:四边形ABCD是菱形,求证:AC2+BD2=2(AB2+BC2);
(2)你认为小亮的猜想是否成立,如果成立,请利用图3给出证明;如果不成立,请举反例说明;
(3)如图4,在△ABC中,BC、AC、AB的长分别为a、b、c,AD是BC边上的中线.试求AD的长.(结果用a,b,c表示)
(2013•雨花台区一模)我们曾经历过探索梯形中位线性质的过程,在得到梯形中位线性质的同时也积累了许多活动经验.请利用这些经验试着解决以下问题:

问题一、如图1,在梯形ABCD中,AD∥BC,AE=
AB,DF=
DC,若AD=4,BC=12,则EF=
.
问题二、如图2,在梯形ABCD中,AD∥BC,F为BC边上一点,AE平分∠DAF,且点E为DC的中点,若AF=BF=6.5cm,AB=5cm,求梯形ABCD的面积.
问题三、如图3,在矩形ABCD中,F为BC边上一点,AE平分∠DAF,且点E为DC的中点,若AD=a,FC=b.请用含有a,b的代数式表示CD的长.
查看习题详情和答案>>
问题一、如图1,在梯形ABCD中,AD∥BC,AE=
| 1 |
| 3 |
| 1 |
| 3 |
| 20 |
| 3 |
| 20 |
| 3 |
问题二、如图2,在梯形ABCD中,AD∥BC,F为BC边上一点,AE平分∠DAF,且点E为DC的中点,若AF=BF=6.5cm,AB=5cm,求梯形ABCD的面积.
问题三、如图3,在矩形ABCD中,F为BC边上一点,AE平分∠DAF,且点E为DC的中点,若AD=a,FC=b.请用含有a,b的代数式表示CD的长.
已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.
(1)如图①,若AP⊥PQ,BP=2,求CQ的长;
(2)如图②,若
=2,且E,F,G分别为AP,PQ,PC
的中点,求四边形EPGF的面积.
查看习题详情和答案>>
(1)如图①,若AP⊥PQ,BP=2,求CQ的长;
(2)如图②,若
| BP | CQ |