ÌâÄ¿ÄÚÈÝ
ÔÚ̽¾¿¾ØÐεÄÐÔÖÊʱ£¬Ð¡Ã÷µÃµ½ÁËÒ»¸öÓÐȤµÄ½áÂÛ£º¾ØÐÎÁ½Ìõ¶Ô½ÇÏßµÄƽ·½ºÍµÈÓÚËÄÌõ±ßµÄƽ·½ºÍ£®Èçͼ1£¬ÔÚ¾ØÐÎABCDÖУ¬Óɹ´¹É¶¨Àí£¬µÃAC2=AB2+BC2£¬BD2=AB2+AD2£¬ÓÖCD=AB£¬AD=BC£¬ËùÒÔAC2+BD2=AB2+BC2+CD2+AD2=2£¨AB2+BC2£©£®Ð¡ÁÁ¶ÔÁâÐνøÐÐÁË̽¾¿£¬Ò²µÃµ½ÁËͬÑùµÄ½áÂÛ£¬ÓÚÊÇСÁÁ²ÂÏ룺ÈÎÒâƽÐÐËıßÐÎÁ½Ìõ¶Ô½ÇÏßµÄƽ·½ºÍµÈÓÚËÄÌõ±ßµÄƽ·½ºÍ£®ÇëÄã½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©Èçͼ2£¬ÒÑÖª£ºËıßÐÎABCDÊÇÁâÐΣ¬ÇóÖ¤£ºAC2+BD2=2£¨AB2+BC2£©£»
£¨2£©ÄãÈÏΪСÁÁµÄ²ÂÏëÊÇ·ñ³ÉÁ¢£¬Èç¹û³ÉÁ¢£¬ÇëÀûÓÃͼ3¸ø³öÖ¤Ã÷£»Èç¹û²»³ÉÁ¢£¬Çë¾Ù·´Àý˵Ã÷£»
£¨3£©Èçͼ4£¬ÔÚ¡÷ABCÖУ¬BC¡¢AC¡¢ABµÄ³¤·Ö±ðΪa¡¢b¡¢c£¬ADÊÇBC±ßÉϵÄÖÐÏߣ®ÊÔÇóADµÄ³¤£®£¨½á¹ûÓÃa£¬b£¬c±íʾ£©
·ÖÎö£º£¨1£©ÉèACÓëBDÏཻÓÚµãO£¬¸ù¾ÝËıßÐÎABCDÊÇÁâÐΣ¬µÃ³öAC=2OA£¬BD=2OB£¬ÀûÓù´¹É¶¨Àí£¬µÃOA2+OB2=AB2£¬ÔÙÀûÓÃAB=BC£¬¼´¿ÉÇóÖ¤AC2+BD2=2£¨AB2+BC2£©£®
£¨2£©×÷AE¡ÍBCÓÚµãE£¬DF¡ÍBC½»BCµÄÑÓ³¤ÏßÓÚF£¬ÔÙ¸ù¾ÝËıßÐÎABCDÊÇƽÐÐËıßÐΣ¬ÇóÖ¤¡÷ABE¡Õ¡÷DCF£¬µÃ³öAE=DF£¬BE=CF£¬Óɹ´¹É¶¨ÀíµÃAC2=AE2+EC2=AE2+£¨BC-BE£©2£¬BD2=DF2+BF2=DF2+£¨BC+CF£©2=AE2+£¨BC+BE£©2
£¨3£©ÑÓ³¤ADµ½E£¬Ê¹DE=AD£¬Á¬½ÓBE£¬CE£¬ÔòAE=2AD£¬ÇóÖ¤ËıßÐÎABECÊÇƽÐÐËıßÐΣ¬ÓÉ£¨2£©µÄ½áÂÛ£¬µÃAE2+BC2=2£¨AB2+AC2£©£¬½âµÃAD2=
(2b2+2c2-a2)£®
£¨2£©×÷AE¡ÍBCÓÚµãE£¬DF¡ÍBC½»BCµÄÑÓ³¤ÏßÓÚF£¬ÔÙ¸ù¾ÝËıßÐÎABCDÊÇƽÐÐËıßÐΣ¬ÇóÖ¤¡÷ABE¡Õ¡÷DCF£¬µÃ³öAE=DF£¬BE=CF£¬Óɹ´¹É¶¨ÀíµÃAC2=AE2+EC2=AE2+£¨BC-BE£©2£¬BD2=DF2+BF2=DF2+£¨BC+CF£©2=AE2+£¨BC+BE£©2
£¨3£©ÑÓ³¤ADµ½E£¬Ê¹DE=AD£¬Á¬½ÓBE£¬CE£¬ÔòAE=2AD£¬ÇóÖ¤ËıßÐÎABECÊÇƽÐÐËıßÐΣ¬ÓÉ£¨2£©µÄ½áÂÛ£¬µÃAE2+BC2=2£¨AB2+AC2£©£¬½âµÃAD2=
1 |
4 |
½â´ð£º½â£º£¨1£©Èçͼ2£¬ÉèACÓëBDÏཻÓÚµãO£¬
¡ßËıßÐÎABCDÊÇÁâÐΣ¬
¡àAC¡ÍBD£¬AC=2OA£¬BD=2OB£®
ÔÚRt¡÷AOBÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
OA2+OB2=AB2£¬
¡àAC2+BD2=4OA2+4OB2=4£¨OA2+OB2£©=4AB2£¬
ÓÖ¡ßAB=BC£¬
¡àAC2+BD2=2£¨AB2+AB2£©=2£¨AB2+BC2£©£®
£¨2£©Ð¡ÁÁµÄ²ÂÏë³ÉÁ¢£®
Ö¤Ã÷£º×÷AE¡ÍBCÓÚµãE£¬DF¡ÍBC½»BCµÄÑÓ³¤ÏßÓÚF£¬
Ôò¡ÏAEB=¡ÏDFC=90¡ã£®
¡ßËıßÐÎABCDÊÇƽÐÐËıßÐΣ¬
¡àAB=DC£¬AB¡ÎCD£¬
¡à¡ÏABE=¡ÏDCF£¬
¡à¡÷ABE¡Õ¡÷DCF£¬
¡àAE=DF£¬BE=CF£®
ÔÚRt¡÷ACEºÍRt¡÷BDFÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
AC2=AE2+EC2=AE2+£¨BC-BE£©2£¬
BD2=DF2+BF2=DF2+£¨BC+CF£©2=AE2+£¨BC+BE£©2£¬
¡àAC2+BD2=2AE2+2BC2+2BE2=2£¨AE2+BE2£©+2BC2£®
ÓÖAE2+BE2=AB2£¬
¹ÊAC2+BD2=2£¨AB2+BC2£©£®
£¨3£©ÑÓ³¤ADµ½E£¬Ê¹DE=AD£¬Á¬½ÓBE£¬CE£¬ÔòAE=2AD£®
¡ßBD=CD£¬
¡àËıßÐÎABECÊÇƽÐÐËıßÐΣ®
ÓÉ£¨2£©µÄ½áÂÛ£¬µÃ
AE2+BC2=2£¨AB2+AC2£©£¬
¼´£¨2AD£©2+a2=2£¨b2+c2£©£¬
½âµÃAD2=
(2b2+2c2-a2)£¬
¹ÊAD=
£®
¡ßËıßÐÎABCDÊÇÁâÐΣ¬
¡àAC¡ÍBD£¬AC=2OA£¬BD=2OB£®
ÔÚRt¡÷AOBÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
OA2+OB2=AB2£¬
¡àAC2+BD2=4OA2+4OB2=4£¨OA2+OB2£©=4AB2£¬
ÓÖ¡ßAB=BC£¬
¡àAC2+BD2=2£¨AB2+AB2£©=2£¨AB2+BC2£©£®
£¨2£©Ð¡ÁÁµÄ²ÂÏë³ÉÁ¢£®
Ö¤Ã÷£º×÷AE¡ÍBCÓÚµãE£¬DF¡ÍBC½»BCµÄÑÓ³¤ÏßÓÚF£¬
Ôò¡ÏAEB=¡ÏDFC=90¡ã£®
¡ßËıßÐÎABCDÊÇƽÐÐËıßÐΣ¬
¡àAB=DC£¬AB¡ÎCD£¬
¡à¡ÏABE=¡ÏDCF£¬
¡à¡÷ABE¡Õ¡÷DCF£¬
¡àAE=DF£¬BE=CF£®
ÔÚRt¡÷ACEºÍRt¡÷BDFÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
AC2=AE2+EC2=AE2+£¨BC-BE£©2£¬
BD2=DF2+BF2=DF2+£¨BC+CF£©2=AE2+£¨BC+BE£©2£¬
¡àAC2+BD2=2AE2+2BC2+2BE2=2£¨AE2+BE2£©+2BC2£®
ÓÖAE2+BE2=AB2£¬
¹ÊAC2+BD2=2£¨AB2+BC2£©£®
£¨3£©ÑÓ³¤ADµ½E£¬Ê¹DE=AD£¬Á¬½ÓBE£¬CE£¬ÔòAE=2AD£®
¡ßBD=CD£¬
¡àËıßÐÎABECÊÇƽÐÐËıßÐΣ®
ÓÉ£¨2£©µÄ½áÂÛ£¬µÃ
AE2+BC2=2£¨AB2+AC2£©£¬
¼´£¨2AD£©2+a2=2£¨b2+c2£©£¬
½âµÃAD2=
1 |
4 |
¹ÊAD=
1 |
2 |
2b2+2c2-a2 |
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éѧÉú¶Ô¹´¹É¶¨Àí£¬¾ØÐεÄÐÔÖÊ£¬Æ½ÐÐËıßÐεÄÐÔÖʺÍÁâÐεÄÐÔÖʵÄÀí½âºÍÕÆÎÕ£¬´ËÌâÉæ¼°µ½µÄ֪ʶµã½Ï¶à£¬×ÛºÏÐÔºÜÇ¿£¬ÓÐÒ»¶¨µÄ°Î¸ßÄѶȣ¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿