摘要:21. 已知椭圆, 抛物线, 且的公共弦 过椭圆的右焦点 . (Ⅰ) 当, 求的值, 并判断抛物线的焦点是否在直线上; (Ⅱ) 是否存在的值, 使抛物线的焦点恰在直线上? 若存在, 求出符合条件的的值; 若不存在, 请说明理由 . 答案: DADAB DACCB
网址:http://m.1010jiajiao.com/timu3_id_4468917[举报]
(本题满分14分)已知椭圆的右顶点,过的焦点且垂直长轴的弦长为.
(I) 求椭圆的方程;
(II) 设点在抛物线上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.
查看习题详情和答案>>
(本题满分14分)已知椭圆的右顶点,过的焦点且垂直长轴的弦长为.
(I) 求椭圆的方程;
(II) 设点在抛物线上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.
(I) 求椭圆的方程;
(II) 设点在抛物线上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.
(本小题满分14分)
已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
查看习题详情和答案>>