摘要: (1).若切点是Qn(an,ank).则切线方程是 当n=1时.切线过点P(1.0) 即.得,当n>1时.切线过点 即 得 所以数列是首项为,公比为的等比数列., (2) ------------ (3)设 则两式相减.得 . ------------
网址:http://m.1010jiajiao.com/timu3_id_4466745[举报]
已知点D(0,-2),过点D作抛线C1:x2=2py(p>0)的切线l,切点A在第一象限,如图.
(1)求切点A的纵坐标;
(2)若离心率为
的椭圆C:
+
=1(a>b>0)恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k2,k3,若2k1+k2=3k,求抛物线C1和椭圆C2的方程.
(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标. 查看习题详情和答案>>
(1)求切点A的纵坐标;
(2)若离心率为
| ||
2 |
y2 |
a 2 |
x2 |
b2 |
(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标. 查看习题详情和答案>>
已知函数f(x)=
,
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)设P(x1,y1),Q(x2,y2)是函数f(x)图象上的两点且x1<1,x2>1,若直线PQ是函数f(x)图象的切线且P、Q都是切点,求证:3<x2<4;(参考数据:ln2≈0.6931,ln3≈1.0986)
(Ⅲ)设函数g(x)的定义域为D,区间I⊆D,若函数g(x)在I上可导,对任意的x0∈I,g(x)的图象在(x0,g(x0))处的切线为l,函数g(x)图象上所有的点都在直线l上方或直线l上,则称区间I为函数g(x)的“下线区间”.类比上面的定义,请你写出函数“上线区间”的定义,并根据你所给的定义,判断区间(-∞,
)是否是函数f(x)的“上线区间”(不必证明).
查看习题详情和答案>>
|
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)设P(x1,y1),Q(x2,y2)是函数f(x)图象上的两点且x1<1,x2>1,若直线PQ是函数f(x)图象的切线且P、Q都是切点,求证:3<x2<4;(参考数据:ln2≈0.6931,ln3≈1.0986)
(Ⅲ)设函数g(x)的定义域为D,区间I⊆D,若函数g(x)在I上可导,对任意的x0∈I,g(x)的图象在(x0,g(x0))处的切线为l,函数g(x)图象上所有的点都在直线l上方或直线l上,则称区间I为函数g(x)的“下线区间”.类比上面的定义,请你写出函数“上线区间”的定义,并根据你所给的定义,判断区间(-∞,
3 |
8 |
已知椭圆C:
+
=1(a>b>0)的长轴长是短轴长的
倍,F1,F2是它的左,右焦点.
(1)若P∈C,且
•
2=0,|PF1|•|PF2|=4,求F1、F2的坐标;
(2)在(1)的条件下,过动点Q作以F2为圆心、以1为半径的圆的切线QM(M是切点),且使|QF_|=
|QM|,求动点Q的轨迹方程.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
3 |
(1)若P∈C,且
PF1 |
PF |
(2)在(1)的条件下,过动点Q作以F2为圆心、以1为半径的圆的切线QM(M是切点),且使|QF_|=
2 |