ÌâÄ¿ÄÚÈÝ
ÒÑÖªµãD£¨0£¬-2£©£¬¹ýµãD×÷Å×ÏßC1£ºx2=2py£¨p£¾0£©µÄÇÐÏßl£¬ÇеãAÔÚµÚÒ»ÏóÏÞ£¬Èçͼ£®£¨1£©ÇóÇеãAµÄ×Ý×ø±ê£»
£¨2£©ÈôÀëÐÄÂÊΪ
| ||
2 |
y2 |
a 2 |
x2 |
b2 |
£¨3£©ÉèP¡¢Q·Ö±ðÊÇ£¨2£©ÖеÄÍÖÔ²C2µÄÓÒ¶¥µãºÍÉ϶¥µã£¬MÊÇÍÖÔ²C2ÔÚµÚÒ»ÏóÏÞµÄÈÎÒâÒ»µã£¬ÇóËıßÐÎOPMQÃæ»ýµÄ×î´óÖµÒÔ¼°´ËʱMµãµÄ×ø±ê£®
·ÖÎö£º£¨1£©ÉèÇеãAµÄ×ø±ê£¬µÃÇÐÏߵķ½³Ì£¬¸ù¾ÝµãD£¨0£¬-2£©ÔÚlÉÏ£¬´Ó¶ø¿ÉÇóÇеãAµÄ×Ý×ø±ê£»
£¨2£©ÓÉe=
µÃa2=4b2£¬´Ó¶øÓÐÍÖÔ²·½³ÌΪ
+
=1£¬½«Ö±ÏßÓëÍÖÔ²ÁªÁ¢
µÃ£¨k2+4£©x2-4kx+4-4b2=0£¬ÀûÓÃ2k1+k2=3k¿ÉÇóÅ×ÎïÏßC1ºÍÍÖÔ²C2µÄ·½³Ì£®
£¨3£©ÉèM£¨m£¬n£©£¨m£¬n£¾0£©£¬Ôò4m2+n2=20£¬±íʾ³öËıßÐÎOPMQÃæ»ý£¬ÀûÓûù±¾²»µÈʽÇó×î´óÖµ£¬´Ó¶øÇó³öMµÄ×ø±ê£®
£¨2£©ÓÉe=
| ||
2 |
y2 |
4b2 |
x2 |
b2 |
|
£¨3£©ÉèM£¨m£¬n£©£¨m£¬n£¾0£©£¬Ôò4m2+n2=20£¬±íʾ³öËıßÐÎOPMQÃæ»ý£¬ÀûÓûù±¾²»µÈʽÇó×î´óÖµ£¬´Ó¶øÇó³öMµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÉèÇеãA(x1£¬ y1)£¬y1=
£¬ÇÐÏߵķ½³ÌΪx1x=p£¨y1+y£©£¬ÓÖµãD£¨0£¬-2£©ÔÚlÉÏ£¬ËùÒÔy1=2£¬¼´ÇеãAµÄ×Ý×ø±êΪ2£»
£¨2£©ÓÉ£¨1£©µÃA(2
£¬2)£¬ÇÐÏßбÂÊk=
¢Ù£¬ÉèB£¨x2£¬y2£©£¬ÇÐÏß·½³Ìy=kx-2£¬ÓÉe=
µÃa2=4b2£¬¡àÍÖÔ²·½³ÌΪ
+
=1ÇÒ¹ýµãA(2
£¬2)
ÓÉ
µÃ£¨k2+4£©x2-4kx+4-4b2=0£¬¡à
¢Ú
ÓÉ2k1+k2=3k¿ÉµÃ2x1+4x2=0£¬¡àx1=2
£¬x2=-
´úÈë¢Ú½âµÃk=2£¬b2=5£¬¡àa2=20£¬¡àp=1
ËùÒÔÅ×ÎïÏßC1µÄ·½³ÌΪx2=2y£¬ÍÖÔ²C2µÄ·½³Ì
+
=1
£¨3£©ÉèM£¨m£¬n£©£¨m£¬n£¾0£©£¬Ôò4m2+n2=20£¬S=
(
m+
n)=
(2m+n)¡Ü
¡Á
=
£¬µ±ÇÒ½öµ±2m=n£¬¼´m=
£¬n=
ʱ£¬È¡¡°=¡±£¬¹ÊËıßÐÎOPMQÃæ»ýµÄ×î´óֵΪ
£¬MµÄ×ø±êΪ(
£¬
)
| ||
2p |
£¨2£©ÓÉ£¨1£©µÃA(2
p |
2 | ||
|
| ||
2 |
y2 |
4b2 |
x2 |
b2 |
p |
ÓÉ
|
|
ÓÉ2k1+k2=3k¿ÉµÃ2x1+4x2=0£¬¡àx1=2
p |
p |
ËùÒÔÅ×ÎïÏßC1µÄ·½³ÌΪx2=2y£¬ÍÖÔ²C2µÄ·½³Ì
y2 |
20 |
x2 |
5 |
£¨3£©ÉèM£¨m£¬n£©£¨m£¬n£¾0£©£¬Ôò4m2+n2=20£¬S=
1 |
2 |
20 |
5 |
| ||
2 |
| ||
2 |
10 |
5 |
2 |
2 |
| ||
2 |
10 |
5 |
2 |
2 |
| ||
2 |
10 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÅ×ÎïÏßµÄÇÐÏß·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ¼°ÀûÓûù±¾²»µÈʽÇóÃæ»ýµÄ×îÖµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿