摘要: 给定抛物线C:y2=4x.F是C的焦点.过点F的直线L与C相交于A.B两点. (1)设L的斜率为1.求与夹角的大小, (2)设=.若∈[4.9].求L在y轴上截距的变化范围.
网址:http://m.1010jiajiao.com/timu3_id_4464924[举报]
(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值. 查看习题详情和答案>>
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π |
3 |
|
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值. 查看习题详情和答案>>
(本题满分14分)已知函数.
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根,请求出一个长度为的区间,使
;如果没有,请说明理由?(注:区间的长度为).
查看习题详情和答案>>
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看习题详情和答案>>