ÌâÄ¿ÄÚÈÝ
£¨±¾ÌâÂú·Ö14·ÖA£®Ñ¡ÐÞ4-4£º¼«×ø±êÓë²ÎÊý·½³ÌÔÚ¼«×ø±êϵÖУ¬Ö±Ïßl µÄ¼«×ø±ê·½³ÌΪ¦È=
¦Ð |
3 |
|
B£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÉèʵÊýx£¬y£¬z Âú×ãx+y+2z=6£¬Çóx2+y2+z2 µÄ×îСֵ£¬²¢Çó´Ëʱx£¬y£¬z µÄÖµ£®
·ÖÎö£ºA£® ÏȵóöÖ±Ïßl µÄÆÕͨ·½³ÌΪy=
x£¬ºÍÇúÏßC µÄÖ±½Ç×ø±ê·½³ÌΪy=
x2(x¡Ê[-2£¬2])ÔÙÁªÁ¢½â·½³Ì×éµÃ
»ò
¼´¿ÉÇóµÃP µãµÄÖ±½Ç×ø±ê£»
B£®¸ù¾ÝÒ»°ãÐÎʽµÄ¿ÂÎ÷²»µÈʽµÃ³ö£º£¨x2+y2+z2£©£¨12+12+22£©¡Ý£¨x+y+2z£©2=36£¬´Ó¶øµÃ³öÇóx2+y2+z2 µÄ×îСֵ£®
3 |
1 |
2 |
|
|
B£®¸ù¾ÝÒ»°ãÐÎʽµÄ¿ÂÎ÷²»µÈʽµÃ³ö£º£¨x2+y2+z2£©£¨12+12+22£©¡Ý£¨x+y+2z£©2=36£¬´Ó¶øµÃ³öÇóx2+y2+z2 µÄ×îСֵ£®
½â´ð£º½â£ºÖ±Ïßl µÄÆÕͨ·½³ÌΪy=
x£¬
ÇúÏßC µÄÖ±½Ç×ø±ê·½³ÌΪy=
x2(x¡Ê[-2£¬2])£¬¡£¨4·Ö£©
ÁªÁ¢½â·½³Ì×éµÃ
»ò
£¨ÉáÈ¥£©
¹ÊP µãµÄÖ±½Ç×ø±êΪ£¨0£¬0£©£®¡£¨7·Ö£©
B£®½â£º¡ß£¨x2+y2+z2£©£¨12+12+22£©¡Ý£¨x+y+2z£©2=36£¬
¡à£¨x2+y2+z2£©¡Ý6£¬µ±ÇÒ½öµ±x=y=
ʱȡµÈºÅ£¬¡£¨4·Ö£©
¡ßx+y+2z=6£¬¡àx=1£¬y=1£¬z=2£®
¡àx2+y2+z2 µÄ×îСֵΪ6£¬´Ëʱx=1£¬y=1£¬z=2£®¡£¨7·Ö£©
3 |
ÇúÏßC µÄÖ±½Ç×ø±ê·½³ÌΪy=
1 |
2 |
ÁªÁ¢½â·½³Ì×éµÃ
|
|
¹ÊP µãµÄÖ±½Ç×ø±êΪ£¨0£¬0£©£®¡£¨7·Ö£©
B£®½â£º¡ß£¨x2+y2+z2£©£¨12+12+22£©¡Ý£¨x+y+2z£©2=36£¬
¡à£¨x2+y2+z2£©¡Ý6£¬µ±ÇÒ½öµ±x=y=
z |
2 |
¡ßx+y+2z=6£¬¡àx=1£¬y=1£¬z=2£®
¡àx2+y2+z2 µÄ×îСֵΪ6£¬´Ëʱx=1£¬y=1£¬z=2£®¡£¨7·Ö£©
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²é¼òµ¥ÇúÏߵļ«×ø±ê·½³Ì¡¢Å×ÎïÏߵIJÎÊý·½³Ì¡¢Ò»°ãÐÎʽµÄ¿ÂÎ÷²»µÈʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦Óëת»¯Ë¼Ï룮ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿