摘要:对于实数集A={x|}.B={x|}.是否存在实数a.使A∪B=Φ?如果存在.请求出!
网址:http://m.1010jiajiao.com/timu3_id_4464706[举报]
已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x.
(1)求函数g(x)在区间(0,e]上的值域T;
(2)是否存在实数a,对任意给定的集合T中的元素t,在区间[1,e]上总存在两个不同的xi(i=1,2),使得f(xi)=t成立、若存在,求出a的取值范围;若不存在,请说明理由;
(3 )函数f(x)图象上是否存在两点A(x1,y1)和B(x2,y2),使得割线AB的斜率恰好等于函数f(x)在AB中点M(x0,y0)处切线的斜率?请写出判断过程.
查看习题详情和答案>>
(1)求函数g(x)在区间(0,e]上的值域T;
(2)是否存在实数a,对任意给定的集合T中的元素t,在区间[1,e]上总存在两个不同的xi(i=1,2),使得f(xi)=t成立、若存在,求出a的取值范围;若不存在,请说明理由;
(3 )函数f(x)图象上是否存在两点A(x1,y1)和B(x2,y2),使得割线AB的斜率恰好等于函数f(x)在AB中点M(x0,y0)处切线的斜率?请写出判断过程.
已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x.
(1)求函数g(x)在区间(0,e]上的值域T;
(2)是否存在实数a,对任意给定的集合T中的元素t,在区间[1,e]上总存在两个不同的xi(i=1,2),使得f(xi)=t成立、若存在,求出a的取值范围;若不存在,请说明理由;
(3 )函数f(x)图象上是否存在两点A(x1,y1)和B(x2,y2),使得割线AB的斜率恰好等于函数f(x)在AB中点M(x0,y0)处切线的斜率?请写出判断过程.
查看习题详情和答案>>
集合A是由适合以下性质的函数f(x)构成的:对于任意的,且u、υ∈(-1,1),都有|f(u)-f(υ)|≤3|u-υ|.
(1)判断函数f1(x)=
是否在集合A中?并说明理由;
(2)设函数f(x)=ax2+bx,且f(x)∈A,试求2a+b的取值范围;
(3)在(2)的条件下,若f(2)=6,且对于满足(2)的每个实数a,存在最小的实数m,使得当x∈[m,2]时,|f(x)|≤6恒成立,试求用a表示m的表达式.
查看习题详情和答案>>
(1)判断函数f1(x)=
1+x2 |
(2)设函数f(x)=ax2+bx,且f(x)∈A,试求2a+b的取值范围;
(3)在(2)的条件下,若f(2)=6,且对于满足(2)的每个实数a,存在最小的实数m,使得当x∈[m,2]时,|f(x)|≤6恒成立,试求用a表示m的表达式.