ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=ax-lnx+1£¨a¡ÊR£©£¬g£¨x£©=xe1-x£®
£¨1£©Çóº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓòT£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâ¸ø¶¨µÄ¼¯ºÏTÖеÄÔªËØt£¬ÔÚÇø¼ä[1£¬e]ÉÏ×Ü´æÔÚÁ½¸ö²»Í¬µÄxi£¨i=1£¬2£©£¬Ê¹µÃf£¨xi£©=t³ÉÁ¢¡¢Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3 £©º¯Êýf£¨x£©Í¼ÏóÉÏÊÇ·ñ´æÔÚÁ½µãA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬Ê¹µÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x0£¬y0£©´¦ÇÐÏßµÄбÂÊ£¿Çëд³öÅжϹý³Ì£®
£¨1£©Çóº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓòT£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâ¸ø¶¨µÄ¼¯ºÏTÖеÄÔªËØt£¬ÔÚÇø¼ä[1£¬e]ÉÏ×Ü´æÔÚÁ½¸ö²»Í¬µÄxi£¨i=1£¬2£©£¬Ê¹µÃf£¨xi£©=t³ÉÁ¢¡¢Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3 £©º¯Êýf£¨x£©Í¼ÏóÉÏÊÇ·ñ´æÔÚÁ½µãA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬Ê¹µÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x0£¬y0£©´¦ÇÐÏßµÄбÂÊ£¿Çëд³öÅжϹý³Ì£®
·ÖÎö£º£¨1£©ÓÉg¡ä£¨x£©=e1-x-xe1-x=e1-x£¨1-x£©£¬Öªg£¨x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬ÓÉ´ËÄÜÇó³ög£¨x£©µÄÖµÓòT£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬ÓÉ´ËÄÜÍƵ¼³öÂú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©kAB=
=
=a-
£¬¶øf¡ä(x0) =f¡ä(
)=a-
£¬ln
=
=
£¬ÓÉ´ËÄÜÍƵ¼³öº¯Êýf£¨x£©Í¼ÏóÉÏÊDz»´æÔÚÁ½µãA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬Ê¹µÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x0£¬y0£©´¦ÇÐÏßµÄбÂÊ£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬ÓÉ´ËÄÜÍƵ¼³öÂú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©kAB=
y1-y2 |
x1-x2 |
a(x1-x2) |
x1-x2 |
lnx1-lnx2 |
x1-x2 |
x1+x2 |
2 |
2 |
x1+x2 |
x1 |
x2 |
2(x1-x2) |
x1+x2 |
2(
| ||
|
½â´ð£º½â£º£¨1£©¡ßg¡ä£¨x£©=e1-x-xe1-x=e1-x£¨1-x£©£¬
¡àg£¨x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬
ÇÒg£¨0£©=0£¬g£¨1£©=1£¾g£¨e£©=e2-e£¬
¡àg£¨x£©µÄÖµÓòTΪ£¨0£¬1]£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬
ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬
¡ßf¡ä(x)=a-
£¬£¨1¡Üx¡Üe£©£¬
¡Ê[
£¬1]£¬
µ±a¡Ý1ʱ£¬f¡ä£¨x£©£¾0£¬f£¨x£©ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒ⣮
µ±a¡Ü
ʱ£¬f¡ä£¨x£©£¼0£¬f£¨x£©ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝ¼õ£¬²»ºÏÌâÒ⣮
µ±1£¼
£¼e£¬¼´
£¼a£¼1ʱ£¬f£¨x£©ÔÚÇø¼ä[1£¬
]Éϵ¥µ÷µÝ¼õ£»f£¨x£©ÔÚÇø¼ä[
£¬e]Éϵ¥µÝÔö£¬
ÓÉÉϿɵÃa¡Ê£¨
£¬1£©£¬´Ëʱ±ØÓÐf£¨x£©µÄ×îСֵСÓÚµÈÓÚ0£¬
ÇÒf£¨x£©µÄ×î´óÖµ´óÓÚµÈÓÚ1£¬
¶øÓÉf£¨x£©min=f£¨
£©=2+lna¡Ü0£¬
¿ÉµÃa¡Ü
£¬Ôòa¡Ê∅£®
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©kAB=
=
=
=a-
£¬
¶øf¡ä(x0) =f¡ä(
)=a-
£¬
¹ÊÓÐ
=
£¬
¼´ln
=
=
£¬
Áît=
¡Ê(0£¬1)£¬
ÔòÉÏʽ»¯Îªlnt+
-2=0£¬
ÁîF£¨t£©=lnt+
-2£¬
ÔòÓÉF¡ä(t)=
-
=
£¾0£¬
¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬
¹ÊF£¨t£©£¼F£¨1£©=0£¬¼´·½³Ìlnt+
-2=0Î޽⣬
ËùÒÔº¯Êýf£¨x£©Í¼ÏóÉÏÊDz»´æÔÚÁ½µãA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬
ʹµÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x0£¬y0£©´¦ÇÐÏßµÄбÂÊ£®
¡àg£¨x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬
ÇÒg£¨0£©=0£¬g£¨1£©=1£¾g£¨e£©=e2-e£¬
¡àg£¨x£©µÄÖµÓòTΪ£¨0£¬1]£®
£¨2£©ÔòÓÉ£¨1£©¿ÉµÃt¡Ê£¨0£¬1]£¬
ÔÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄt¡Ê£¨0£¬1]£¬f£¨x£©=tÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬
¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬
¡ßf¡ä(x)=a-
1 |
x |
1 |
x |
1 |
e |
µ±a¡Ý1ʱ£¬f¡ä£¨x£©£¾0£¬f£¨x£©ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒ⣮
µ±a¡Ü
1 |
e |
µ±1£¼
1 |
a |
1 |
e |
1 |
a |
1 |
a |
ÓÉÉϿɵÃa¡Ê£¨
1 |
e |
ÇÒf£¨x£©µÄ×î´óÖµ´óÓÚµÈÓÚ1£¬
¶øÓÉf£¨x£©min=f£¨
1 |
a |
¿ÉµÃa¡Ü
1 |
e2 |
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®
£¨3£©kAB=
y1-y2 |
x1-x2 |
a(x1-x2) |
x1-x2 |
=
a(x1-x2)-(lnx1-lnx2) |
x1-x2 |
=a-
lnx1-lnx2 |
x1-x2 |
¶øf¡ä(x0) =f¡ä(
x1+x2 |
2 |
2 |
x1+x2 |
¹ÊÓÐ
lnx1-lnx2 |
x1-x2 |
2 |
x1+x2 |
¼´ln
x1 |
x2 |
2(x1-x2) |
x1+x2 |
2(
| ||
|
Áît=
x1 |
x2 |
ÔòÉÏʽ»¯Îªlnt+
4 |
t+1 |
ÁîF£¨t£©=lnt+
4 |
t+1 |
ÔòÓÉF¡ä(t)=
1 |
t |
4 |
(t+1)2 |
(t-1)2 |
t(t+1) |
¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬
¹ÊF£¨t£©£¼F£¨1£©=0£¬¼´·½³Ìlnt+
4 |
t+1 |
ËùÒÔº¯Êýf£¨x£©Í¼ÏóÉÏÊDz»´æÔÚÁ½µãA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬
ʹµÃ¸îÏßABµÄбÂÊÇ¡ºÃµÈÓÚº¯Êýf£¨x£©ÔÚABÖеãM£¨x0£¬y0£©´¦ÇÐÏßµÄбÂÊ£®
µãÆÀ£º±¾Ì⿼²éº¯ÊýµÄÖµÓòµÄÇ󷨣¬Ì½Ë÷ÊÇ·ñ´æÔÚÂú×ãÌõ¼þµÄʵÊý£¬Ì½Ë÷º¯ÊýͼÏóÉÏÂú×ãÌõ¼þµÄÁ½µãÊÇ·ñ´æÔÚ£®×ÛºÏÐÔÇ¿£¬ÄѶȴ󣬶ÔÊýѧ˼άÄÜÁ¦ÒªÇó½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿