摘要:10.如果函数对称.那么a= .
网址:http://m.1010jiajiao.com/timu3_id_4458388[举报]
如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,下面四个函数:①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
其中属于有界泛函数的是( )
x |
x2+x+1 |
其中属于有界泛函数的是( )
A、①② | B、①③ | C、③④ | D、②④ |
如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=
在(0,2)内具有“Lg”性质,且中值ξ=
,f′(ξ)=-
;
③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有
[f(x1)+f(x2)]<f(
)恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=
.
其中你认为正确的所有命题序号是 .
查看习题详情和答案>>
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=
2-
|
2 |
| ||
2 |
③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有
1 |
2 |
x1+x2 |
2 |
x1+x2 |
2 |
其中你认为正确的所有命题序号是