摘要: 已知函数. ①当时.求函数的最小值. ②若对任意.>恒成立.试求实数的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_4455616[举报]
(本小题满分14分)
已知函数
,
,
.
(Ⅰ)若曲线
与曲线
相交,且在交点处有相同的切线,求
的值及该切线的方程;
(Ⅱ)设函数
,当
存在最小值时,求其最小值
的解析式;
(Ⅲ)对(Ⅱ)中的
,证明:当
时,
.
查看习题详情和答案>>
(本小题满分14分)已知函数
满足:
;(1)分别写出
时
的解析式
和
时
的解析式
;并猜想
时
的解析式
(用
和
表示)(不必证明)(2分)(2)当![]()
时,![]()
的图象上有点列
和点列
,线段
与线段
的交点
,求点
的坐标
;(4分)
(3)在前面(1)(2)的基础上,请你提出一个点列
的问题,并进行研究,并写下你研究的过程 (8分)