摘要:已知向量m =, 向量n =(2.0).且m与n所成角为.其中A.B.C是的内角. (1) 求角B的大小; (2) 求 的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_4454745[举报]
(本小题满分14分)已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量m=(sinA,1),n=(1,-cosA),且m⊥n.
(1)求角A;
(2)若b+c=a,求sin(B+)的值.
查看习题详情和答案>>
(本小题满分14分)已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量m=(sinA,1), n=(1,-cosA),且m⊥n.
(1)求角A; (2)若b+c=a,求sin(B+)的值.
(1)求角A; (2)若b+c=a,求sin(B+)的值.
本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵A=
有一个属于特征值1的特征向量
=
.
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
(t为参数).以直角坐标系xOy中的原点O为 极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知矩阵A=
|
α |
|
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
|
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
|
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.
(2012•漳州模拟)本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵A=
有一个属于特征值1的特征向量
=
.
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
(t为参数).以直角坐标系xOy中的原点O为 极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知矩阵A=
|
α |
|
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
|
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
|
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.
本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4-2:矩阵与变换选做题
已知矩阵A=有一个属于特征值1的特征向量.
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求在矩阵AB的对应变换作用下所得到的的面积.
(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为.
(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)判断曲线与曲线的交点个数,并说明理由.
(3)(本小题满分7分)选修4-5:不等式选讲选做题
已知函数,不等式在上恒成立.
(Ⅰ)求的取值范围;
(Ⅱ)记的最大值为,若正实数满足,求的最大值.
查看习题详情和答案>>