摘要:19.已知数列{an}的首项a1 = .前n项和Sn = n2an . ①求数列{an}的通项an, ②记b1 = 0.bn = .Tn为数列{bn}的前n项和. 求证:0≤.
网址:http://m.1010jiajiao.com/timu3_id_4454538[举报]
(本题满分12分) 已知函数.
(Ⅰ) 求f 1(x);
(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an;
(Ⅲ) 设bn=(32n-8),求数列{bn}的前项和Tn
查看习题详情和答案>>(本题满分12分) 已知函数.
(Ⅰ) 求f 1(x);
(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an;
(Ⅲ) 设bn=an+12+an+22+¼+a2n+12,是否存在最小的正整数k,使对于任意nÎN+有bn<成立. 若存在,求出k的值;若不存在,说明理由.
查看习题详情和答案>>. (本题满分12分)已知函数.(Ⅰ) 求f –1(x);(Ⅱ) 若数列{an}的首项为a1=1,(n??N+),求{an}的通项公式an;(Ⅲ) 设bn=an+12+an+22+??+a2n+12,是否存在最小的正整数k,使对于任意n??N+有bn<成立. 若存在,求出k的值;若不存在,说明理由.
查看习题详情和答案>>