摘要:31. 已知函数满足以下条件:定义域是一个闭区间.在定义域上严格单调...最大为.求的定义域和值域.
网址:http://m.1010jiajiao.com/timu3_id_4453559[举报]
已知函数f(x)的定义域是D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②f(
)=
f(x);③f(1-x)=1-f(x).则f(
)=
.
查看习题详情和答案>>
x |
5 |
1 |
2 |
4 |
5 |
1 |
2 |
1 |
2 |
已知函数f(x)的定义域关于原点对称,且满足以下三个条件:
①x1、x2、x1-x2是定义域中的数时,有f(x1-x2)=
;
②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)判断f(x1-x2)与f(x2-x1)之间的关系,并推断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,2a)上的单调性,并证明;
(3)当函数f(x)的定义域为(-4a,0)∪(0,4a)时,
①求f(2a)的值;②求不等式f(x-4)<0的解集.
查看习题详情和答案>>
①x1、x2、x1-x2是定义域中的数时,有f(x1-x2)=
f(x1)f(x2)+1 | f(x2)-f(x1) |
②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)判断f(x1-x2)与f(x2-x1)之间的关系,并推断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,2a)上的单调性,并证明;
(3)当函数f(x)的定义域为(-4a,0)∪(0,4a)时,
①求f(2a)的值;②求不等式f(x-4)<0的解集.
已知函数y=f(x)同时满足以下五个条件:
(1)f(x+1)的定义域是[-3,1];
(2)f(x)是奇函数;
(3)在[-2,0)上,f′(x)>0;
(4)f(-1)=0;
(5)f(x)既有最大值又有最小值.
请画出函数y=f(x)的一个图象,并写出相应于这个图象的函数解析式.
查看习题详情和答案>>