题目内容

已知函数f(x)的定义域关于原点对称,且满足以下三个条件:
①x1、x2、x1-x2是定义域中的数时,有f(x1-x2)=
f(x1)f(x2)+1f(x2)-f(x1)

②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0.
(1)判断f(x1-x2)与f(x2-x1)之间的关系,并推断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,2a)上的单调性,并证明;
(3)当函数f(x)的定义域为(-4a,0)∪(0,4a)时,
 ①求f(2a)的值;②求不等式f(x-4)<0的解集.
分析:(1)将x1-x2和x2-x1分别代入抽象表达式①,即可判断f(x1-x2)与f(x2-x1)之间互为相反数,并推断函数f(x)为奇函数
(2)利用已知条件③和函数单调性定义,即可证明函数f(x)在(0,2a)上为单调增函数
(3)①令x1=a,x2=-a,代入抽象表达式结合f(a)=-1即可得f(2a)的值;②先证明函数f(x)关于点(2a,0)对称,进而判断函数f(x)在(-4a,0)和(0,4a)上的单调性,最后利用单调性解不等式即可
解答:解:(1)不妨令x=x1-x2,则f(-x)=f(x2-x1)=
f(x2)f(x1)+1
f(x1)-f(x2)
=-
f(x1)f(x2)+1
f(x2)-f(x1)
=-f(x1-x2)=-f(x),
∴f(x)是奇函数;
(2)在(0,2a)上任取两个实数x1、x2
且x1<x2,则有f(x1)-f(x2)=
f(x2)f(x1)+1
f(x2-x1)

∵0<x<2a时,f(x)<0,
∴f(x2)<0且f(x1)<0,
故f(x2)f(x1)>0,
即f(x2)f(x1)+1>0;
∵0<x1<2a,0<x2<2a且x1<x2,∴0<x2-x1<2a,
即有f(x2-x1)<0;
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)在(0,2a)上是增函数;
(3)①由题意可得:f(2a)=f[a-(-a)]=
f(a)f(-a)+1
f(-a)-f(a)
=
1-f 2(a )
-2f(a)
=
1-1
2
=0

②∵f(2a-x)=
f(2a )f(x )+1
f(x )-f(2a)
=
1
f(x)
,f(2a+x)=
f(2a )f(-x )+1
f(-x )-f(2a)
=
1
f(-x)
=-
1
f(x)

∴f(2a-x)=-f(2a+x)
∴函数关于(2a,0)对称
由(2)知f(x)在(0,2a)上是增函数;
∴f(x)在(2a,4a)上也是增函数,
∴f(x)在(0,4a)上是增函数;在(-4a,0)上也是增函数
当x-4∈(0,4a)时,f(x-4)<0?f(x-4)<f(2a)?x-4<2a,
∴0<x-4<2a,即4<x<2a+4
当x-4∈(-4a,0)时,f(x-4)<0?f(x-4)<f(-2a)?x-4<-2a,
∴-4a<x-4<-2a,即4-4a<x<4-2a
所以不等式的解集是(4-4a,4-2a)∪(4,2a+4).
点评:本题综合考查了抽象函数表达式的意义和应用,函数的奇偶性及其判断,函数的单调性定义及其证明,利用函数的单调性和对称性解不等式
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网