1、斜率为1的直线l与椭圆+y2=1相交于A、B两点,则|AB|的最大值为 ( )
A.2 B. C. D.
2、抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有 ( )
A.x3=x1+x2 B.x1x2=x1x3+x2x3 C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0
3、过点(3,0)的直线l与双曲线4x2-9y2=36只有一个公共点,则直线l共有 ( )
(A)1条 (B)2条 (C)3条 (D)4条
4、设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是 ( )
A.[-,] B.[-2,2] C.[-1,1] D.[-4,4]
5、若动点(x,y)在曲线(b>0)上变化,则x22y的最大值为 ( )
(A) ; (B) ; (C) ;(D) 2b。
6、已知双曲线的焦点为F1、F2,点M在双曲线上且则点M到x轴的距离为( )
(A) (B) (C) (D)
7、已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是 ( )
A. B. C. D.
8、已知双曲线-=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为 ( )
A.30º B.45º C.60º D.90º
9、从集合{1,2,3…,11}中任选两个元素作为椭圆方程中的m和n,则能组成落在矩形区域B={(x,y)| |x|<11且|y|<9}内的椭圆个数为 ( )
A.43 B. 72 C. 86 D. 90
10、设直线关于原点对称的直线为,若与椭圆的交点为A、B,点为椭圆上的动点,则使的面积为的点的个数为( )
(A)1 (B)2 (C)3 (D)4
11、直角坐标平面xoy中,若定点A(1,2)与动点P(x,y)满足=4。则点P的轨迹方程是 .
12、如果过两点和的直线与抛物线没有交点,那么实数的取值范围是__________________.
13、在抛物线y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________.
14、正方形ABCD的边AB在直线y=x+4上,C、D两点在抛物线y2=x上,则正方形ABCD的面积为_________.
15、过双曲线(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_______.
16、已知两点M(1,)、N(-4,-),给出下列曲线方程:①4x+2y-1=0,②x2+y2=3,③+y2=1,④-y2=1,在曲线上存在点P满足|MP|=|NP|的所有曲线方程是_________.
17、已知抛物线y2=2px(p>0),过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,且|AB|≤2p.
(1)求a的取值范围.
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.
18、已知中心在原点,顶点A1、A2在x轴上,离心率e=的双曲线过点P(6,6).
(1)求双曲线方程.
(2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论.
19、已知双曲线C的两条渐近线都过原点,且都以点A(,0)为圆心,1为半径的圆相切,双曲线的一个顶点A1与A点关于直线y=x对称.
(1)求双曲线C的方程.
(2)设直线l过点A,斜率为k,当0<k<1时,双曲线C的上支上有且仅有一点B到直线l的距离为,试求k的值及此时B点的坐标.
20、点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,。
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值。
21、已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足
(Ⅰ)设为点P的横坐标,证明;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
[2006年高考二轮复习专题讲义之针对训练]
解析几何专题--解析几何的综合运用同步训练答案
C B C C A C D D B B
11、x+2y-4=0 12、 13、y=8x-15. 14、18或50 15、2 16、
17、解:(1)设直线l的方程为:y=x-a,代入抛物线方程得(x-a)2=2px,即x2-2(a+p)x+a2=0
∴|AB|=≤2p.∴4ap+2p2≤p2,即4ap≤-p2
又∵p>0,∴a≤-.
(2)设A(x1,y1)、B(x2,y2),AB的中点 C(x,y),
由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p,
则有x==p.
∴线段AB的垂直平分线的方程为y-p=-(x-a-p),从而N点坐标为(a+2p,0)
点N到AB的距离为
从而S△NAB=
当a有最大值-时,S有最大值为p2.
18、解:(1)如图,设双曲线方程为=1.由已知得,解得a2=9,b2=12.
所以所求双曲线方程为=1.
(2)P、A1、A2的坐标依次为(6,6)、(3,0)、(-3,0),
∴其重心G的坐标为(2,2)
假设存在直线l,使G(2,2)平分线段MN,设M(x1,y1),N(x2,y2).则有
,∴kl=
∴l的方程为y= (x-2)+2,
由,消去y,整理得x2-4x+28=0.
∵Δ=16-4×28<0, ∴所求直线l不存在.
19、解:(1)设双曲线的渐近线为y=kx,由d==1,解得k=±1.
即渐近线为y=±x,又点A关于y=x对称点的坐标为(0,).
∴a==b,所求双曲线C的方程为x2-y2=2.
(2)设直线l:y=k(x-)(0<k<1,依题意B点在平行的直线l′上,
且l与l′间的距离为.
设直线l′:y=kx+m,应有,化简得m2+2km=2. ②
把l′代入双曲线方程得(k2-1)x2+2mkx+m2-2=0,
由Δ=4m2k2-4(k2-1)(m2-2)=0.可得m2+2k2=2 ③
②、③两式相减得k=m,代入③得m2=,解设m=,k=,
此时x=,y=.故B(2,).
20、 [解](1)由已知可得点A(-6,0),F(0,4)
设点P(,),则={+6, },={-4, },由已知可得
则2+9-18=0, =或=-6.
由于>0,只能=,于是=.
∴点P的坐标是(,)
(2) 直线AP的方程是-+6=0.
设点M(,0),则M到直线AP的距离是.
于是=,又-6≤≤6,解得=2.
椭圆上的点(,)到点M的距离有
,
由于-6≤≤6, ∴当=时,d取得最小值
21、(Ⅰ)证法一:设点P的坐标为
由P在椭圆上,得
由,所以 ………………………3分
证法二:设点P的坐标为记
则
由
证法三:设点P的坐标为椭圆的左准线方程为
由椭圆第二定义得,即
由,所以…………………………3分
(Ⅱ)解法一:设点T的坐标为
当时,点(,0)和点(-,0)在轨迹上.
当|时,由,得.
又,所以T为线段F2Q的中点.
在△QF1F2中,,所以有
综上所述,点T的轨迹C的方程是…………………………7分
解法二:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上.
当|时,由,得.
又,所以T为线段F2Q的中点.
设点Q的坐标为(),则
因此 ①
由得 ②
将①代入②,可得
综上所述,点T的轨迹C的方程是……………………7分
|
由③得,由④得 所以,当时,存在点M,使S=;
当时,不存在满足条件的点M.………………………11分
当时,,
由,
,
,得
解法二:C上存在点M()使S=的充要条件是
|
由④得 上式代入③得
于是,当时,存在点M,使S=;
当时,不存在满足条件的点M.………………………11分
当时,记,
由知,所以…………14分