题目内容
【题目】如图,两平行金属板水平放置,板长为L,间距为d,板间电压为U,一个不计重力的电荷量为q的带电粒子以初速度v0沿两板的中线射入,恰好沿下板的边缘飞出,粒子通过平行金属板的时间为t,则( )
A. 在 时间内,电场力对粒子做的功为
B. 在时间内,电场力对粒子做的功为
C. 在粒子下落的前和后过程中,电场力做功之比为1:2
D. 在粒子下落的前和后过程中,电场力做功之比为1:1
【答案】D
【解析】
试题设粒子在前时间内和在后时间内竖直位移分别为y1、y2,由y=at2和匀变速直线运动的推论可知y1:y2=1:3,得:y1=d,y2=d,则在前时间内,电场力对粒子做的功为:W1=qU=qU,
在后时间内,电场力对粒子做的功为:W2=qU=qU.故AB错误;根据W=qEy可得,在粒子下落前和后的过程中,电场力做功之比为1:1,故C错误,D正确;故选D.
【题目】(8分)利用气垫导轨验证机械能守恒定律。实验装置示意图如图1所示,实验步骤:
A.将气垫导轨放在水平桌面上,桌面高度不低于1m,将导轨调至水平。 |
B.用游标卡尺测量挡光条的宽度d |
C.由导轨标尺读出两光电门中心之间的距离s |
D.将滑块移至光电门1左侧某处,待砝码静止不动时,释放滑块,要求砝码落地前挡光条已通过光电门2。 |
E.从数字计时器(图1中未画出)上分别读出挡光条通过光电门1和光电门2所用的时间Δt1和Δt2。
F.用天平称出滑块和挡光条的总质量M,再称出托盘和砝码的总质量m。
用表示直接测量量的字母写出下列所求物理量的表达式:
(1)滑块通过光电门1和光电门2时的瞬时速度分别为v1= 和v2=
(2)在滑块从光电门1运动到光电门2的过程中,系统势能的减少量ΔEp=____ __(重力加速度为g)。系统(包括滑块,挡光条、托盘和砝码)动能的增加量ΔEk=__ ____
(3)如果ΔEp=ΔEk,则可认为验证了机械能守恒定律。