ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬Ôڹ⻬ˮƽÃæÉÏÓÐÁ½¸öÖÊÁ¿·Ö±ðΪm1¡¢m2µÄÎïÌ壬ÒÑÖªm1£¾m2£¬Á½ÎïÌå¼äˮƽÁ¬½Ó×ÅÒ»ÇáÖʵ¯»É³Ó£¬ÈôÓôóСΪFµÄˮƽÁ¦ÏòÓÒÀm1£¬Îȶ¨ºóµÄ¼ÓËٶȴóСΪa1£¬µ¯»É³ÓµÄʾÊýΪF1£»Èô¸ÄÓôóСΪFµÄˮƽÀÁ¦Ïò×óÀm2£¬Îȶ¨ºóµÄ¼ÓËٶȴóСΪa2£¬µ¯»É³ÓµÄʾÊýΪF2£¬ÔòÒÔÏÂÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
·ÖÎö£ºÏȶÔÕûÌå·ÖÎö£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËٶȣ¬ÔÙ¸ôÀë·ÖÎö£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öµ¯»É³ÓµÄÀÁ¦£®
½â´ð£º½â£ºµ±ÀÁ¦ÏòÓÒÀm1ʱ£¬¶ÔÕûÌå·ÖÎö£¬¼ÓËÙ¶Èa1=
£¬¸ôÀë¶Ôm2·ÖÎö£¬ÓÐF1=m2a1=
£®
µ±ÀÁ¦Ïò×óÀm2ʱ£¬¶ÔÕûÌå·ÖÎö£¬¼ÓËÙ¶Èa2=
£¬¸ôÀë¶Ôm1·ÖÎö£¬ÓÐF2=m1a2=
£®ËùÒÔa1=a2£¬ÒòΪm1£¾m2£¬ËùÒÔF2£¾F1£®¹ÊBÕýÈ·£¬A¡¢C¡¢D´íÎó£®
¹ÊÑ¡B£®
F |
m1+m2 |
m2F |
m1+m2 |
µ±ÀÁ¦Ïò×óÀm2ʱ£¬¶ÔÕûÌå·ÖÎö£¬¼ÓËÙ¶Èa2=
F |
m1+m2 |
m1F |
m1+m2 |
¹ÊÑ¡B£®
µãÆÀ£º±¾Ìâ×ÛºÏÔËÓÃÁËÕûÌå·¨ºÍ¸ôÀë·¨£¬¹Ø¼üÊÇÊÜÁ¦·ÖÎö£¬È»ºóÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɽøÐÐÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿