题目内容

11.如图所示,水平面内的等边三角形ABC的边长为L,顶点C恰好位于光滑绝缘直轨道CD的最低点,光滑直导轨的上端点D到A、B两点的距离均为L,D在AB边上的竖直投影点为O.一对电荷量均为-Q的点电荷分别固定于A、B两点.在D处将质量为m、电荷量为+q的小球套在轨道上(忽略它对原电场的影响),将小球由静止开始释放,已知静电力常量为k、重力加速度为g,且k$\frac{Qq}{{L}^{2}}$=$\frac{\sqrt{3}}{3}$mg,忽略空气阻力,则(  )
A.轨道上D点的场强大小为$\frac{mg}{2q}$
B.小球刚到达C点时,其加速度为零
C.小球刚到达C点时,其动能为$\frac{\sqrt{3}}{2}$mgL
D.小球沿直轨道CD下滑过程中,其电势能先增大后减小

分析 根据矢量合成的方法,结合库仑定律即可求出D点的电场强度;对C点的小球进行受力分析,结合库仑定律即可求出小球在C点的加速度;根据功能关系即可求出小球到达C的动能;根据等量同种点电荷的电场的特点分析各点的电势的变化,然后结合电势与电势能的关系分析小球的电势能的变化.

解答 解:A、负电荷产生的电场指向负电荷,可知两个负电荷在D处的电场强度分别指向A与B,由于两个点电荷的电量是相等的,所以两个点电荷在D点的电场强度的大小相等,则它们的合场强的方向沿DA、DB的角平分线;
由库仑定律,A、B在D点的场强的大小:${E}_{A}={E}_{B}=\frac{kQ}{{L}^{2}}=\frac{\sqrt{3}mg}{3q}$
它们的合场强:ED=EAcos30°+EBcos30°=$\frac{mg}{q}$.故A错误;
B、由几何关系宽度:$\overline{AO}=\overline{CO}=\frac{\sqrt{3}}{2}L$,则:∠OCD=45°
对小球进行受力分析,其受力的剖面图如图:
由于C到A、B的距离与D到A、B的距离都等于L,结合A的分析可知,C点的电场强度的大小与D点的电场强度的大小相等,方向指向O点,即:${E}_{C}={E}_{D}=\frac{mg}{q}$
沿斜面方向:mgcos45°-F•cos45°=ma
垂直于方向:mgsin45°+Fsin45°=N
其中F是库仑力,F=$q•{E}_{C}=q•\frac{mg}{q}=mg$
联立以上三式得:a=0.故B正确;
C、由于C与D到A、B的距离都等于L,结合等量同种点电荷的电场特点可知,C点与D点的电势是相等的,所以小球从D到C的过程中电场力做功的和等于0,则只有重力做功,小球的机械能守恒,得:$mg•\overline{OD}=\frac{1}{2}m{v}^{2}$
由几何关系可得:$\overline{OD}=L•sin60=\frac{\sqrt{3}L}{2}$
小球的动能:${E}_{k}=\frac{1}{2}m{v}^{2}=\frac{\sqrt{3}mgL}{2}$,故C正确;
D、由几何关系可知,在CD的连线上,CD连线的中点处于到A、B的距离最小,电势最低,小球带正电,所以小球在CD的连线中点处的电势能最小.则小球沿直轨道CD下滑过程中,其电势能先减小后增大.故D错误.
故选:BC

点评 此题的难度在于计算小球到最低点时的电场力的大小,注意AB处有等量同异种电荷,CD位于AB边的中垂面上,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网