题目内容
【题目】在地面上以大小为v1的初速度竖直向上抛出一质量为m的皮球,皮球落地时速度大小为v2。若皮球运动过程中所受空气阻力的大小与其速率成正比,重力加速度为g。下列判断正确的是( )
A.皮球上升的最大高度为
B.皮球从抛出到落地过程中克服阻力做的功为
C.皮球上升过程经历的时间为
D.皮球从抛出到落地经历的时间为
【答案】BD
【解析】
A.当阻力为零时,皮球上升的最大高度,由动能定理:,可得上升的最大高度:
当有阻力作用时,皮球上升的最大高度小于。故A错误。
B.皮球在整个上升和下降过程中只有阻力做功,根据动能定理有:,因为阻力做负功,所以克服阻力做功为:。故B正确。
C.皮球上升过程中受到向下的阻力作用,故皮球上升时的加速度大于重力加速度,故上升时间小于。故C错误。
D.用动量定理,结合微积分思想,假设向下为正方向,设上升阶段的平均速度为v,则:上升过程:mgt1+kvt1=mv1,由于平均速度乘以时间等于上升的高度,故有:h=vt1,即mgt1+kh=mv1。同理,设上升阶段的平均速度为v′,则下降过程:mgt2+kvt2=mv2,即:mgt2﹣kh=mv2。联立可得:
mg(t1+t2)=m(v1+v2)
而t1+t2=t,可得:
故D正确。
练习册系列答案
相关题目