题目内容

如图所示,oa、ob、oc是竖直面内三根固定的光滑细杆,O、a、b、c、d位于同一圆周上,d点为圆周的最高点,c点为最低点.每根杆上都套着一个小滑环(图中未画出),三个滑环都从o点无初速释放,用t1、t2、t3依次表示滑环到达a、b、c所用的时间,则


  1. A.
    t1=t2=t3
  2. B.
    t3>t1>t2
  3. C.
    t1<t2<t3
  4. D.
    t1>t2>t3
D
分析:根据“等时圆”的适用条件构造出“等时圆”,作出图象,根据位移之间的关系即可判断运动时间.
解答:解:以O点为最高点,取合适的竖直直径oe作等时圆,交ob于b,如图所示,显然o到f、b、g、e才是等时的,比较图示位移oa>of,oc<og,故推得t1>t2>t3
选项ABC错误,D正确.
故选D
点评:如果不假思考,套用结论,就会落入等时圆”的陷阱,要注意o点不是最高点,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网