题目内容

【题目】半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0 . 圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图所示.则( )

A.θ=0时,杆产生的电动势为2Bav
B.θ= 时,杆产生的电动势为
C.θ=0时,杆受的安培力大小为
D.θ= 时,杆受的安培力大小为

【答案】A,D
【解析】解:A、θ=0时,杆产生的电动势E=BLv=2Bav,故A正确;

B、θ= 时,根据几何关系得出此时导体棒的有效切割长度是a,所以杆产生的电动势为Bav,故B错误;

C、θ=0时,由于单位长度电阻均为R0.所以电路中总电阻(2+π/2)aR0

所以杆受的安培力大小F=BIL=B2a = ,故C错误;

D、θ= 时,电路中总电阻是( π+1)aR0

所以杆受的安培力大小F′=BI′L′= ,故D正确;

故选:AD.

根据几何关系求出此时导体棒的有效切割长度,根据法拉第电磁感应定律求出电动势.

注意总电阻的求解,进一步求出电流值,即可算出安培力的大小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网