题目内容
如图所示,在xOy平面内,一质量为m,电荷量为q的带电粒子(重力不计)以速度v0从坐标原点O沿与+x方向成θ角射人第一象限区,并从x轴上A的点离开第一象限区.
(1)若在xOy平面存在一点电荷形成的电场,带电粒子q在电场力作用下沿圆弧匀速率从O点运动到A点,已知OA间的距离为a,θ=30°,求O点电场强度E的大小.
(2)若只存在一范围足够大的垂直于xOy平面的匀强磁场区,已知磁场的磁感应强度为B,求带电粒子飞离y轴的最远距离.
(3)若只在第一象限内存在垂直于xOy平面的圆形匀强磁场区,已知OA间的距离仍为a,且θ=45°,求磁场的磁感应强度的最小值B0.
(1)若在xOy平面存在一点电荷形成的电场,带电粒子q在电场力作用下沿圆弧匀速率从O点运动到A点,已知OA间的距离为a,θ=30°,求O点电场强度E的大小.
(2)若只存在一范围足够大的垂直于xOy平面的匀强磁场区,已知磁场的磁感应强度为B,求带电粒子飞离y轴的最远距离.
(3)若只在第一象限内存在垂直于xOy平面的圆形匀强磁场区,已知OA间的距离仍为a,且θ=45°,求磁场的磁感应强度的最小值B0.
分析:(1)根据几何关系可知带电粒子运动圆弧的半径然后根据库仑力提供向心力求出库仑力,再求解电场强度;
(2)粒子做匀速圆周运动,画出轨迹后根据几何关系可以求解最远距离;
(3)磁场磁感应强度越小,粒子回旋半径越大,则磁场区半径越大,当磁场区圆边界与xy轴相切,磁场磁感应强度最小.
(2)粒子做匀速圆周运动,画出轨迹后根据几何关系可以求解最远距离;
(3)磁场磁感应强度越小,粒子回旋半径越大,则磁场区半径越大,当磁场区圆边界与xy轴相切,磁场磁感应强度最小.
解答:解:(1)粒子在电场中做匀速圆周运动,由电场力提供向心力,有qE=m
由几何关系可知,带电粒子运动的半径r1=a
解得 E=
即O点电场强度E的大小为
.
(2)粒子在磁场中圆周运动的轨迹如图所示
洛伦兹力提供向心力,有
qv0B=m
解得 r2=
P点到y轴的距离最远:xm=r2(1+sinθ)=
即带电粒子飞离y轴的最远距离为
.
(3)如图所示,圆形磁场区只限于第一象限内,磁场磁感应强度越小,粒子回旋半径越大,则磁场区半径越大,当磁场区圆边界与xy轴相切,磁场磁感应强度最小,设对应的运动半径为r3,
则 r3=
qv0B0=m
解得
B0=
即磁场的磁感应强度的最小值B0为
.
| ||
r1 |
由几何关系可知,带电粒子运动的半径r1=a
解得 E=
m
| ||
aq |
即O点电场强度E的大小为
m
| ||
aq |
(2)粒子在磁场中圆周运动的轨迹如图所示
洛伦兹力提供向心力,有
qv0B=m
| ||
|
mv0 |
qB |
P点到y轴的距离最远:xm=r2(1+sinθ)=
3mv0 |
2Bq |
即带电粒子飞离y轴的最远距离为
3mv0 |
2Bq |
(3)如图所示,圆形磁场区只限于第一象限内,磁场磁感应强度越小,粒子回旋半径越大,则磁场区半径越大,当磁场区圆边界与xy轴相切,磁场磁感应强度最小,设对应的运动半径为r3,
则 r3=
a |
2 |
qv0B0=m
| ||
r3 |
解得
B0=
2mv0 |
aq |
即磁场的磁感应强度的最小值B0为
2mv0 |
aq |
点评:本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了.
练习册系列答案
相关题目