题目内容
【题目】如图所示,通过水平绝缘传送带输送完全相同的正方形单匝铜线框,为了检测出个别未闭合的不合格线框,让线框随传送带通过一固定匀强磁场区域(磁场方向垂直于传送带平面向下),观察线框进入磁场后是否相对传送带滑动就能够检测出未闭合的不合格线框。已知磁场边界MN、PQ与传送带运动方向垂直,MN与PQ间的距离为d,磁场的磁感应强度为B。各线框质量均为m,电阻均为R,边长均为L(L<d);传送带以恒定速度v0向右运动,线框与传送带间的动摩擦因数为μ,重力加速度为g。线框在进入磁场前与传送带的速度相同,且右侧边平行于MN减速进入磁场,当闭合线框的右侧边经过边界PQ时又恰好与传送带的速度相同。设传送带足够长,且在传送带上始终保持右侧边平行于磁场边界。对于闭合线框,求:
(1)线框的右侧边刚进入磁场时所受安培力的大小;
(2)线框在进入磁场的过程中运动加速度的最大值以及速度的最小值;
(3)从线框右侧边刚进入磁场到穿出磁场后又相对传送带静止的过程中,传送带对该闭合铜线框做的功。
【答案】(1) (2)am=;v=(3)2μmgd
【解析】
试题分析:(1)闭合铜线框右侧边刚进入磁场时产生的电动势E=BLv0 (1分)
产生的电流I= (1分)
右侧边所受安培力F=BIL= (1分)
(2)线框以速度v0进入磁场,在进入磁场的过程中,受安培力而减速运动;进入磁场后,在摩擦力作用下加速运动,当其右侧边到达PQ时速度又恰好等于v0。因此,线框在刚进入磁场时,所受安培力最大,加速度最大,设为am;线框全部进入磁场的瞬间速度最小,设此时线框的速度为v。
线框刚进入磁场时,根据牛顿第二定律有 (1分)
解得am= (1分)
在线框完全进入磁场又加速运动到达边界PQ的过程中,根据动能定理有
(1分)
解得 v= (1分)
(3)线框从右侧边进入磁场到运动至磁场边界PQ的过程中
线框受摩擦力f=μmg
由功的公式Wf1=fd (1分)
解得 Wf1=μmgd (1分)
闭合线框出磁场与进入磁场的受力情况相同,则完全出磁场的瞬间速度为v;在线框完全出磁场后到加速至与传送带速度相同的过程中,设其位移x
由动能定理有 (2分)
解得 x=d-L
闭合线框在右侧边出磁场到与传送带共速的过程中位移x'=x+L=d
在此过程中摩擦力做功Wf2=μmgd (1分)
因此,闭合铜线框从刚进入磁场到穿出磁场后又相对传送带静止的过程中,传送带对闭合铜线框做的功W= Wf1+Wf2=2μmgd (1分)