题目内容

20.如图所示,在空间中有一坐标系xOy,其第一象限内充满着两个匀强磁场区域I和Ⅱ,直线OP是它们的边界.区域I中的磁感应强度为B,方向垂直纸面向外;区域Ⅱ中的磁感应强度为2B,方向垂直纸面向内;边界上的P点坐标为(4L,3L).一质量为 m、电荷量为q的带正电粒子从P点平行于y轴负方向射入区域I,经过一段时间后,粒子恰好经过原点O.忽略粒子重力,已知sin37°=0.6,cos37°=0.8.则下列说法中正确的是(  )
A.该粒子一定沿y轴负方向从O点射出
B.该粒子射出时与y轴正方向夹角可能是74°
C.该粒子在磁场中运动的最短时间t=$\frac{53πm}{60qB}$
D.该粒子运动的可能速度为v=$\frac{25qBL}{12nm}$(n=1,2,3…)

分析 粒子进入磁场中受到洛伦兹力而做匀速圆周运动,考虑边界效应,粒子进入磁场与离开磁场时速度方向与边界的夹角相等,故必定从Ⅱ区离开O点;
考虑到t=$\frac{θ}{2π}T$,粒子先在磁场I区中运动,后在磁场II区中运动并离开O点的情况是运动时间最短的;
粒子的速度大小满足一定条件时,粒子先在磁场I区中运动,后在磁场II区中运动,然后又重复前面的运动,直到经过原点O,这样粒子经过n个周期性的运动到过O点,每个周期的运动情况相同,粒子在一个周期内的位移S=$\frac{OP}{n}$(n=1,2,3,…),根据S与两个半径的关系,求出半径,即可求解速度的通项.

解答 解:A、粒子进入磁场中受到洛伦兹力而做匀速圆周运动,对于直线边界,考虑轨迹圆的对称性,粒子进入磁场与离开磁场时速度方向与边界的夹角相等,故粒子不可能从Ⅰ区到达O点,故一定是从Ⅱ区到达O点;
画出可能的轨迹,如图所示:

tanα=$\frac{3L}{4L}$=0.75
得α=37°,α+β=90°
故该粒子一定沿y轴负方向从O点射出,故A正确,B错误;
C、设粒子的入射速度为v,用R1,R2,T1,T2分别表示粒子在磁场I区和II区中运动的轨道半径和周期,则:
qvB=m$\frac{{v}^{2}}{{R}_{1}}$
qv(2B)=m$\frac{{v}^{2}}{{R}_{2}}$
周期分别为:
T1=$\frac{2π{R}_{1}}{v}$=$\frac{2πm}{qB}$
T2=$\frac{2π{R}_{2}}{v}$=$\frac{πm}{qB}$
粒子先在磁场I区中做顺时针的圆周运动,后在磁场II区中做逆时针的圆周运动,然后从O点射出,这样粒子从P点运动到O点所用的时间最短.
粒子在磁场I区和II区中的运动时间分别为:
t1=$\frac{2β}{2π}$•T1
t2=$\frac{2β}{2π}{T}_{2}$
粒子从P点运动到O点的时间至少为:
t=t1+t2
由以上各式解得:
t=$\frac{53πm}{60qB}$
故C正确;
D、粒子的速度大小满足一定条件时,粒子先在磁场I区中运动,后在磁场II区中运动,然后又重复前面的运动,直到经过原点O.这样粒子经过n个周期性的运动到过O点,每个周期的运动情况相同,粒子在一个周期内的位移为S=$\frac{OP}{n}$=$\frac{5L}{n}$(n=1、2,3,…)
粒子每次在磁场I区中运动的位移为:
S1=$\frac{{R}_{1}}{{{R}_{1}+R}_{2}}$S=$\frac{2}{3}S$
由图中几何关系可知:
$\frac{\frac{{S}_{1}}{2}}{{R}_{1}}$=cosα=0.8
而R1=$\frac{mv}{qB}$
由以上各式解得粒子的速度大小为:
v=$\frac{25qBL}{12nm}$(n=1、2,3,…)
故D正确;
故选:ACD

点评 本题在复合场中做周期性运动的类型,关键要运用数学知识分析粒子的规律,得到粒子在一个周期内位移的通项,注意圆心和半径的确定方法;本题综合性较强,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网