题目内容
【题目】如图所示,甲、乙传送带倾斜于水平地面放置,并以相同的恒定速率v逆时针运动,两传送带粗糙程度不同,但长度、倾角均相同.将一小物体分别从两传送带顶端的A点无初速度释放,甲传送带上物体到达底端B点时恰好达到速度v;乙传送带上物体到达传送带中部的C点时恰好达到速度v,接着以速度v运动到底端B点.则物体从A运动到B的过程中( )
A.物体在甲传送带上运动的时间比乙大
B.物体与甲传送带之间的动摩擦因数比乙大
C.两传送带对物体做功相等
D.两传送带因与物体摩擦产生的热量相等
【答案】AC
【解析】物体在甲传送带上的平均速度为,在乙传送带上的平均速度大于,而运动的位移相同,故物体在甲传送带上运动的时间比乙大,选项A正确;物体在甲传送带上加速距离比在乙传送带上加速距离大,而末速度相同,由v=at可知a甲<a乙,由牛顿第二定律有μmgcos θ+mgsin θ=ma,故μ甲<μ乙,选项B错误;物体在运动过程中受重力和传送带的作用力,物体下降的高度和末速度均相等,由动能定理可知,传送带对物体做功相等,选项C正确;设传送带的高度为h,由摩擦生热Q=fs相对知,Q甲=f1s1=f1(vt1-t1)=f1·,Q乙=f2s2=f2·,根据牛顿第二定律得f1+mgsin θ=ma1=m,f2+mgsin θ=ma2=m,解得Q甲=mv2-mgh,Q乙=mv2-mg(h-h′),故Q甲<Q乙,选项D错误.
练习册系列答案
相关题目