题目内容
【题目】如图所示,在场强大小为E的匀强电场中,一根不可伸长的绝缘细线一端拴一个质量为m、电荷量为q的带负电小球,另一端固定在O点。把小球拉到使细线水平的位置A,然后将小球由静止释放,小球沿弧线运动到细线与水平成θ=60°的位置B时速度为零。以下说法正确的是( )
A.小球重力与电场力的关系是Eq=mg
B.小球在B点时,细线拉力为2mg
C.小球在A点和B点的加速度大小相等
D.如果小球带正电,还能沿AB圆弧运动
【答案】AC
【解析】
A.小球从A运动到B的过程中,根据动能定理得
mgLsinθ-qEL(1-cosθ)=0
得
qE=mg
故A正确;
B.小球到达B点时速度为零,向心力为零,则沿细线方向合力为零,此时对小球受力分析可知
T=qEcos60°+mgsin60°
故细线拉力
T=mg
故B错误;
C.在A点,小球所受的合力等于重力,加速度
aA=g
在B点,合力沿切线方向
F′合=Eqsin60°-mgcos60°=mg
加速度
aB=g
所以A、B两点的加速度大小相等,故C正确;
D.如果小球带正电,将沿重力和电场力合力方向做匀加速直线运动,直到细线绷紧后圆周运动,故D错误。
故选AC。
练习册系列答案
相关题目