ÌâÄ¿ÄÚÈÝ
ÓîÖæÖдæÔÚһЩÀëÆäËüºãÐǽÏÔ¶µÄ¡¢ÓÉÖÊÁ¿ÏàµÈµÄÈý¿ÅÐÇ×é³ÉµÄÈýÐÇ ÏµÍ³£¬Í¨³£¿ÉºöÂÔÆäËüÐÇÌå¶ÔËüÃǵÄÒýÁ¦×÷Óã®Òѹ۲⵽Îȶ¨µÄÈýÐÇϵͳ´æÔÚÁ½ÖÖ»ù±¾µÄ¹¹³ÉÐÎʽ£ºÒ»ÖÖÊÇÈý¿ÅÐÇλÓÚͬһֱÏßÉÏ£¬Á½¿ÅÐÇΧÈÆÖÐÑëÐÇÔÚͬһ°ë¾¶ÎªRµÄÔ²¹ìµÀÉÏÔËÐУ»ÁíÒ»ÖÖÐÎʽÊÇÈý¿ÅÐÇλÓڵȱßÈý½ÇÐεÄÈý¸öÏîµãÉÏ£¬²¢ÑØÍâ½ÓÓڵȱßÈý½ÇÐεÄÔ²ÐιìµÀÔËÐУ®Éèÿ¸öÐÇÌåµÄÖÊÁ¿¾ùΪm£®µÚÒ»ÖÖÐÎʽÏ£¬ÐÇÌåÔ˶¯µÄÏßËÙ¶ÈΪ
£¬ÖÜÆÚΪ
R
R£®
|
|
4¦ÐR
£®
|
4¦ÐR
£®
£®¼ÙÉèÁ½ÖÖÐÎʽÐÇÌåµÄÔ˶¯ÖÜÆÚÏàͬ£¬µÚ¶þÖÖÐÎʽÏÂÐÇÌåÖ®¼äµÄ¾àÀëӦΪ
|
3 |
| ||
3 |
| ||
·ÖÎö£ºÃ÷È·Ñо¿¶ÔÏ󣬶ÔÑо¿¶ÔÏóÊÜÁ¦·ÖÎö£¬ÕÒµ½×öÔ²ÖÜÔ˶¯ËùÐèÏòÐÄÁ¦µÄÀ´Ô´£®
½â´ð£º½â£º£¨1£©ÔÚµÚÒ»ÖÖÐÎʽÏ£ºÈý¿ÅÐÇλÓÚͬһֱÏßÉÏ£¬Á½¿ÅÐÇΧÈÆÖÐÑëÐÇÔÚͬһ°ë¾¶ÎªRµÄÔ²¹ìµÀÉÏÔËÐУ»
ÆäÖбßÉϵÄÒ»¿ÅÐÇÊÜÖÐÑëÐǺÍÁíÒ»¿Å±ßÉÏÐǵÄÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£®
G
+G
=m
½âÖ®µÃ£ºv=
T=
=4¦ÐR
¢Ù
£¨2£©ÁíÒ»ÖÖÐÎʽÊÇÈý¿ÅÐÇλÓڵȱßÈý½ÇÐεÄÈý¸öÏîµãÉÏ£¬²¢ÑØÍâ½ÓÓڵȱßÈý½ÇÐεÄÔ²ÐιìµÀÔËÐУ¬
ÓÉÍòÓÐÒýÁ¦¶¨ÂɺÍÅ£¶ÙµÚ¶þ¶¨Âɵãº2
cos30¡ã=m
(
)2 ¢Ú
ÓТ٢ڽâµÃ£ºL=
R
¹Ê´ð°¸Îª£º
£»4¦ÐR
£»
R
ÆäÖбßÉϵÄÒ»¿ÅÐÇÊÜÖÐÑëÐǺÍÁíÒ»¿Å±ßÉÏÐǵÄÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£®
G
m2 |
R2 |
m2 |
(2R)2 |
v2 |
R |
½âÖ®µÃ£ºv=
|
T=
2¦ÐR |
v |
|
£¨2£©ÁíÒ»ÖÖÐÎʽÊÇÈý¿ÅÐÇλÓڵȱßÈý½ÇÐεÄÈý¸öÏîµãÉÏ£¬²¢ÑØÍâ½ÓÓڵȱßÈý½ÇÐεÄÔ²ÐιìµÀÔËÐУ¬
ÓÉÍòÓÐÒýÁ¦¶¨ÂɺÍÅ£¶ÙµÚ¶þ¶¨Âɵãº2
Gm2 |
L2 |
L |
2cos30¡ã |
2¦Ð |
T |
ÓТ٢ڽâµÃ£ºL=
3 |
| ||
¹Ê´ð°¸Îª£º
|
|
3 |
| ||
µãÆÀ£ºÍòÓÐÒýÁ¦¶¨ÂɺÍÅ£¶ÙµÚ¶þ¶¨ÂÉÊÇÁ¦Ñ§µÄÖص㣬ÔÚ±¾ÌâÖÐÓÐЩͬѧÕÒ²»³öʲôÁ¦ÌṩÏòÐÄÁ¦£¬¹Ø¼üÔÚÓÚ½øÐÐÕýÈ·ÊÜÁ¦·ÖÎö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿