ÌâÄ¿ÄÚÈÝ
3£®ÔÚÓõç´Å´òµã¼ÆʱÆ÷¡°Ì½¾¿Ð¡³µ¼ÓËÙ¶ÈÓëËùÊÜÍâÁ¦ºÍÖÊÁ¿¹Øϵ¡±µÄʵÑéÖУ¬Ä³Í¬Ñ§µÃµ½Ò»Ìõµã¼£ÇåÎúµÄÖ½´ø£¬´Ó±È½ÏÇåÎúµÄµãÆð£¬Ã¿Îå¸ö´òÓ¡µãÈ¡Ò»¸ö¼ÆÊýµã£¨Ã¿Á½¸ö¼ÆÊýµã¼äÓÐËĸöʵÑéµãδ»³ö£©£¬·Ö±ð±êÃ÷0¡¢1¡¢2¡¢3¡¢4¡¢5¡¢6¡£¬Óÿ̶ȳßÁ¿µÃ¸÷¼ÆÊýµãµ½0¼ÆÊýµãÖ®¼äµÄ¾àÀëÈçͼËùʾ£¬ÒÑÖªµçÔ´µÄƵÂÊΪ50Hz£¬¼ÆËã½á¹û¾ù±£ÁôÈýλÓÐЧÊý×Ö£¬Ôò£º£¨1£©´òµã¼ÆʱÆ÷´ò¼ÆÊýµã2ʱ£¬Ð¡³µµÄËٶȴóСv2=0.425m¨Ms£®
£¨2£©Ð¡³µµÄ¼ÓËٶȴóСa=0.880m¨Ms2£®
£¨3£©ÔÚ±¾ÊµÑéÖУ¬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇD£®
A£®Æ½ºâĦ²ÁÁ¦Ê±£¬Ð¡Í°Ó¦ÓÃϸÏßͨ¹ý¶¨»¬ÂÖϵÔÚС³µÉÏ£¬µ«Ð¡Í°ÄÚ²»ÄÜ×°É°
B£®ÊµÑéÖÐÎÞÐèʼÖÕ±£³ÖС³µºÍíÀÂëµÄÖÊÁ¿Ô¶Ô¶´óÓÚÉ°ºÍСͰµÄÖÊÁ¿
C£®ÊµÑéÖÐÈçÓÃ×Ý×ø±ê±íʾ¼ÓËٶȣ¬Óúá×ø±ê±íʾС³µºÍ³µÄÚíÀÂëµÄ×ÜÖÊÁ¿£¬Ãè³öÏàÓ¦µÄµãÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬¼´¿ÉÖ¤Ã÷¼ÓËÙ¶ÈÓëÖÊÁ¿³É·´±È
D£®Æ½ºâĦ²ÁÁ¦Ê±£¬Ð¡³µºóÃæµÄÖ½´ø±ØÐëÁ¬ºÃ£¬ÒòΪÔ˶¯¹ý³ÌÖÐÖ½´øÒ²ÒªÊܵ½×èÁ¦
£¨4£©ÈôÔÚʵÑé¹ý³ÌÖУ¬µçÔ´µÄƵÂʺöÈ»ÂÔµÍÓÚ50Hz£¬ÊµÑéÕßÓÖ²»ÖªµçԴƵÂʸı䣬ÕâÑù¼ÆËã³öµÄ¼ÓËÙ¶ÈÖµÓëÕæʵֵÏà±ÈÊÇÆ«´ó£¨Ñ¡Ìî¡°Æ«´ó¡±¡¢¡°Æ«Ð¡¡±»ò¡°²»±ä¡±£©£®
·ÖÎö ´òµã¼ÆʱÆ÷ʹÓý»±äµçÁ÷£¬µ±µçԴƵÂÊΪ50Hzʱ£¬Ã¿¸ô0.02s´òÒ»´Îµã£®
¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛÇó³öС³µµÄ˲ʱËÙ¶ÈÓë¼ÓËٶȣ®
ÔÚ¡°Ì½¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹Øϵ¡±ÊµÑéÖУ¬Ê¹µÃÉ°ºÍСͰµÄÖØÁ¦µÈÓÚС³µµÄºÏÁ¦£¬ÐèƽºâĦ²ÁÁ¦£¬Æ½ºâĦ²ÁÁ¦Ê±£¬²»¹ÒÉ°ºÍСͰ£¬Ð¡³µºóÃæÐèÁ¬½ÓÖ½´ø£®ÒòΪС³µ×ö¼ÓËÙÔ˶¯£¬Í°ºÍÉ°µÄÖØÁ¦²»µÈÓÚÉþ×ÓµÄÀÁ¦£¬Ðè±£³ÖС³µºÍíÀÂëµÄÖÊÁ¿Ô¶´óÓÚÉ°ºÍСͰµÄÖÊÁ¿£®
½â´ð ½â£º£¨1£©ÓÉÓÚÿÏàÁÚÁ½¸ö¼ÆÊýµã¼ä»¹ÓÐ4¸öµãûÓл³ö£¬ËùÒÔÏàÁڵļÆÊýµã¼äµÄʱ¼ä¼ä¸ôT=0.1s£¬
¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯ÖÐʱ¼äÖеãµÄËٶȵÈÓڸùý³ÌÖеÄƽ¾ùËٶȣ¬¿ÉÒÔÇó³ö´òÖ½´øÉÏDµãʱС³µµÄ˲ʱËٶȴóС£®
v2=$\frac{0.1150-0.030}{2¡Á0.1}$=0.425 m/s
£¨2£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ¹«Ê½¡÷x=aT2¿ÉÒÔÇó³ö¼ÓËٶȵĴóС£¬
µÃ£ºa=$\frac{£¨0.3092-0.1150£©-0.1150}{{£¨3¡Á0.1£©}^{2}}$=0.880 m¨Ms2£®
£¨3£©A¡¢Æ½ºâĦ²ÁÁ¦Ê±£¬²»Ðè¹ÒÉ°ºÍСͰ£¬µ«Ð¡³µºóÃæ±ØÐëÓëÖ½´øÏàÁ¬£¬ÒòΪÔ˶¯¹ý³ÌÖÐÖ½´øÊܵ½×èÁ¦£®¹ÊA´íÎó£¬DÕýÈ·£®
B¡¢¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬ÒÔÕûÌåΪÑо¿¶ÔÏóÓÐmg=£¨m+M£©a
½âµÃa=$\frac{mg}{m+M}$£®ÔòÉþ×ÓµÄÀÁ¦F=$\frac{mg}{1+\frac{m}{M}}$£¬µ±mԶСÓÚM£¬¼´É°ºÍСͰµÄÖÊÁ¿Ô¶Ð¡ÓÚС³µºÍíÀÂëµÄÖÊÁ¿Ê±£¬Éþ×ÓµÄÀÁ¦µÈÓÚÉ°ºÍСͰµÄÖØÁ¦£®¹ÊB´íÎó£®
C¡¢ÊµÑéÖÐÈçÓÃ×Ý×ø±ê±íʾ¼ÓËٶȣ¬Óúá×ø±ê±íʾС³µºÍ³µÄÚíÀÂëµÄ×ÜÖÊÁ¿£¬Ãè³öÏàÓ¦µÄµã²»ÔÚͬһÌõÖ±ÏßÉÏ£¬ÊÇÇúÏߣ®Ó¦¸Ã×öaÓë$\frac{1}{M}$ͼÏߣ¬ÈôͼÏßΪֱÏߣ¬Ö¤Ã÷¼ÓËÙ¶ÈÓëÖÊÁ¿³É·´±È£®¹ÊC´íÎó£®
¹ÊÑ¡£ºD£®
£¨4£©ÈôÔÚʵÑé¹ý³ÌÖУ¬µçÔ´µÄƵÂʺöÈ»ÂÔµÍÓÚ50Hz£¬ÔòÖÜÆÚ±ä´ó£¬ÓÉa=$\frac{¡÷x}{{T}^{2}}$£¬Öªa±äС£¬ÈôÈÔÈ»°´ÕÕT²»±ä¼ÆË㣬ÏÔÈ»¼ÆËã³öµÄ¼ÓËÙ¶ÈÖµ±ÈÕæʵֵƫ´ó£®
¹Ê´ð°¸Îª£º£¨1£©0.425 £¨2£©0.880
£¨3£©D £¨4£©Æ«´ó
µãÆÀ ÒªÌá¸ßÓ¦ÓÃÔȱäËÙÖ±ÏߵĹæÂÉÒÔ¼°ÍÆÂÛ½â´ðʵÑéÎÊÌâµÄÄÜÁ¦£¬ÔÚƽʱÁ·Ï°ÖÐÒª¼ÓÇ¿»ù´¡ÖªÊ¶µÄÀí½âÓëÓ¦Óã®Ö»ÒªÕæÕýÕÆÎÕÁËʵÑéÔÀí¾ÍÄÜ˳Àû½â¾ö´ËÀàʵÑéÌâÄ¿£¬¶øʵÑé²½Ö裬ʵÑéÊý¾ÝµÄ´¦Àí¶¼ÓëʵÑéÔÀíÓйأ¬¹ÊÒª¼ÓÇ¿¶ÔʵÑéÔÀíµÄѧϰºÍÕÆÎÕ£®
A£® | ÈôÎÛË®ÖÐÕýÀë×ӽ϶࣬ÔòÇ°±íÃæ±Èºó±íÃæµçÊÆ¸ß | |
B£® | ÈôÎÛË®ÖиºÀë×ӽ϶࣬Ôòºó±íÃæ±ÈÇ°±íÃæµçÊÆ¸ß | |
C£® | ÎÛË®ÖÐÀë×ÓŨ¶ÈÔ½¸ßµçѹ±íµÄʾÊý½«Ô½´ó | |
D£® | ÎÛË®Á÷Á¿QÓëU³ÉÕý±È£¬Óëa¡¢bÓÐ¹Ø |
A£® | ËüÃǵİ뾶֮±ÈÊÇ2£º3 | B£® | ËüÃǵÄÖÜÆÚÖ®±ÈÊÇ3£º1 | ||
C£® | ËüÃǵļÓËÙ¶ÈÖ®±ÈÊÇ2£º1 | D£® | ËüÃǵÄתËÙÖ®±ÈÊÇ3£º2 |
A£® | 0 | B£® | gsin¦È | C£® | gtan¦È | D£® | $\frac{g}{cos¦È}$ |
A£® | ´ÓXµ½O£¬µçÁ÷ÓÉE¾GÁ÷ÏòF£¬ÏÈÔö´óÔÙ¼õС | |
B£® | ´ÓXµ½O£¬µçÁ÷ÓÉF¾GÁ÷ÏòE£¬ÏȼõСÔÙÔö´ó | |
C£® | ´ÓOµ½Y£¬µçÁ÷ÓÉE¾GÁ÷ÏòF£¬ÏÈÔö´óÔÙ¼õС | |
D£® | ´ÓOµ½Y£¬µçÁ÷ÓÉF¾GÁ÷ÏòE£¬ÏȼõСÔÙÔö´ó |
A£® | W=0 | B£® | W=-$\frac{{Mmh{{sin}^2}¦È}}{{£¨{M+m}£©£¨{M+m{{sin}^2}¦È}£©}}$g | ||
C£® | W=$\frac{{Mmh{{cos}^2}¦È}}{{£¨{M+m}£©£¨{M+m{{sin}^2}¦È}£©}}$g | D£® | W=-$\frac{M{m}^{2}h{cos}^{2}¦È}{£¨M+m£©£¨M+m{sin}^{2}¦È£©}g$ |