ÌâÄ¿ÄÚÈÝ
3£®ÈçͼËùʾ£¬Á½¸ù¼ä¾àΪdµÄƽÐй⻬½ðÊôµ¼¹ìÓëˮƽÃæ³É¦È½Ç£¬µ¼¹ì¼ä½ÓÓÐ×èֵΪRµÄµç×裬ÆäËûµç×è²»¼Æ£®µç×èҲΪR¡¢ÖÊÁ¿ÎªmµÄ½ðÊô¸Ëab´¹Ö±µ¼¹ì·ÅÖã¬ÔÚNN¡äÒÔϵķ¶Î§ÄÚÓд¹Ö±ÓÚµ¼¹ìƽÃæµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈΪB£¬MM¡ä¡¢NN¡ä¡¢PP¡ä±Ë´ËƽÐУ®½ðÊô¸Ëab´Óµ¼¹ìµÄ¶¥¶ËMM¡äÓɾ²Ö¹¿ªÊ¼»¬Ï£¬¸Õ½øÈë´Å³¡±ß½çNN¡äʱµÄËÙ¶ÈΪv£¬Ï»¬µ½PP¡ä´¦Ê±ËٶȱäΪÎȶ¨£¬PP¡äÓëNN¡äµÄ¾àÀëΪs£¬Ç󣺣¨1£©½ðÊô¸Ëab¸Õ½øÈë´Å³¡±ß½çNN¡äʱ¼ÓËٶȵĴóС£»
£¨2£©½ðÊô¸Ëab´ÓNN »¬µ½PP¡äµÄ¹ý³ÌÖеç×èRÉϲúÉúµÄÈÈÁ¿£®
·ÖÎö £¨1£©·ÖÎöµ¼ÌåµÄÊÜÁ¦Çé¿ö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½ðÊô¸ËµÄ¼ÓËٶȴóС£®
£¨2£©¶ÔÈ«³Ì·ÖÎöÄÜÁ¿µÄת»¯¹Øϵ£¬Óɹ¦ÄܹØϵ¿ÉÇóµÃRÉϲúÉúµÄÈÈÁ¿£®
½â´ð ½â£º£¨1£©½ðÊô¸Ë¸Õ½øÈë´Å³¡Ê±£¬²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆΪ£ºE=Bdv
½ðÊô¸ËËùÊܵݲÅàÁ¦Îª£ºF=BId=$\frac{{B}^{2}{d}^{2}v}{2R}$
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
mgsin¦È-$\frac{{B}^{2}{d}^{2}v}{2R}$=ma
½âµÃ£ºa=gsin¦È-$\frac{{B}^{2}{d}^{2}v}{2mR}$
£¨2£©Éè½ðÊô¸ËÎȶ¨ËÙ¶ÈΪv¡ä£¬
ÓÉƽºâÌõ¼þµÃ mgsin¦È=BI¡äd
½ðÊô¸ËÖиÐÓ¦µçÁ÷Ϊ I¡ä=$\frac{Bdv¡ä}{2R}$
v¡ä=$\frac{2mgRsin¦È}{{{B^2}{d^2}}}$
ÓÉÄÜÁ¿ÊغãµÃ
mgssin¦È=$\frac{1}{2}$m v¡ä2-$\frac{1}{2}$m v2+2Q
½âµÃ Q=$\frac{1}{2}$mgssin¦È-$\frac{{{m^3}{g^2}{R^2}si{n^2}¦È}}{{{B^4}{d^4}}}$+$\frac{1}{4}$m v2
´ð£º£¨1£©½øÈë´Å³¡Ê±µÄ¼ÓËÙ¶ÈΪgsin¦È-$\frac{{B}^{2}{d}^{2}v}{2mR}$£»
£¨2£©²úÉúµÄÈÈÁ¿QΪ$\frac{1}{2}$mgssin¦È-$\frac{{{m^3}{g^2}{R^2}si{n^2}¦È}}{{{B^4}{d^4}}}$+$\frac{1}{4}$mv2
µãÆÀ ±¾Ì⿼²éµ¼ÌåÇиî´Å¸ÐÏßÖеÄÊÜÁ¦¼°ÄÜÁ¿¹Øϵ£¬Òª×¢ÒâÕýÈ··ÖÎöÊÜÁ¦Çé¿ö¼°ÄÜÁ¿×ª»¯µÄÇé¿ö£¬¸ù¾Ý¹¦ÄܹØϵ¼´¿ÉÇóµÃ²úÉúµÄÈÈÁ¿£®
A£® | »¬¿éËùÊܵĺÏÁ¦ÊǺ㶨µÄ | B£® | ÏòÐÄÁ¦´óСÖð½¥Ôö´ó | ||
C£® | ÏòÐÄÁ¦Öð½¥¼õС | D£® | ÏòÐļÓËÙ¶ÈÖð½¥Ôö´ó |
A£® | ÓÉͼ¿ÉÖª£¬Á½²¨²¨³¤¾ùΪ0.8m | |
B£® | µ±t=2sʱ£¬ÖʵãPµÄËÙ¶ÈΪÁã | |
C£® | µ±t=4.5sʱ£¬x=0.55m´¦ÖʵãλÒÆΪ2$\sqrt{2}$cm | |
D£® | µ±t=8sʱ£¬x=0.3m´¦ÖʵãÕý¾Æ½ºâλÖÃÏòÉÏÔ˶¯ |
A£® | WÒ»Ö±Ôö´ó£¬PÒ»Ö±Ôö´ó | B£® | WÒ»Ö±¼õС£¬PÒ»Ö±¼õС | ||
C£® | WÏȼõСºóÔö´ó£¬PÏÈÔö´óºó¼õС | D£® | WÏÈÔö´óºó¼õС£¬PÏȼõСºóÔö´ó |