ÌâÄ¿ÄÚÈÝ
18£®ÈçͼËùʾ£¬ÊúֱƽÃæxOyÄÚÓÐÈý¸ö¿í¶È¾ùΪLÊ×βÏà½ÓµÄµç³¡ÇøÓòABFE¡¢BCGFºÍCDHG£®Èý¸öÇøÓòÖзֱð´æÔÚ·½ÏòΪ+y¡¢+y¡¢+xµÄÔÈÇ¿µç³¡£¬Æ䳡ǿ´óС±ÈÀýΪ2£º1£º2£®ÏÖÓÐÒ»´øÕýµçµÄÎïÌåÒÔijһ³õËٶȴÓ×ø±êΪ£¨0£¬L£©µÄPµãÉäÈëABFE³¡Çø£¬³õËٶȷ½ÏòˮƽÏòÓÒ£®ÎïÌåÇ¡´Ó×ø±êΪ£¨2L£¬$\frac{L}{2}$£©µÄQµãÉäÈëCDHG³¡Çø£¬ÒÑÖªÎïÌåÔÚABFEÇøÓòËùÊܵ糡Á¦ºÍËùÊÜÖØÁ¦´óСÏàµÈ£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬ÎïÌå¿ÉÒÔÊÓΪÖʵ㣬yÖáÊúÖ±ÏòÉÏ£¬ÇøÓòÄÚÊúÖ±·½Ïòµç³¡×ã¹»´ó£®Ç󣺣¨1£©ÎïÌå½øÈëABFEÇøÓòʱµÄ³õËٶȴóС£»
£¨2£©ÎïÌå´ÓYÖá½øÈëµç³¡µ½¾¹ýXÖáʱËù¾ÀúµÄʱ¼ä£»
£¨3£©ÎïÌå´ÓDH±ß½çÉä³öλÖõÄ×ø±ê£®
·ÖÎö £¨1£©·ÖÎöÎïÌåµÄÊÜÁ¦Çé¿öºÍÔ˶¯Çé¿ö£ºÎïÌåÔÚABFEÇøÓòËùÊܵ糡Á¦ºÍËùÊÜÖØÁ¦´óСÏàµÈ£¬×öÔÈËÙÖ±ÏßÔ˶¯£®½øÈëBCGFºó£¬ÊÜÁ¦ÊúÖ±ÏòϵÄÖØÁ¦ºÍÊúÖ±ÏòÉϵĵ糡Á¦£¬×öÀàƽÅ×Ô˶¯£®¸ù¾ÝÎïÌåµ½´ïQµÄËٶȴóСºÍ·½Ïò£¬·ÖÎöÎïÌå½øÈëCDHGµÄÔ˶¯Çé¿ö£®ÔÚBCDFÇøÓò£¬ÎïÌå×öÀàƽÅ×Ô˶¯£¬Ë®Æ½Î»ÒÆΪL£¬ÊúֱλÒÆΪ$\frac{L}{2}$£®¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËٶȣ¬ÔËÓÃÔ˶¯µÄ·Ö½â·½·¨£¬Çó³ö³õËٶȣ®
£¨2£©ÎïÌåÔÚABFEÇøÓò×öÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝλÒƺͳõËÙ¶ÈÇó³öʱ¼ä£»ÔÚBCGFÇøÓò£¬ÎïÌå×öÀàƽÅ×Ô˶¯£¬Çó³öÎïÌåµ½´ïQËٶȴóСºÍ·½Ïò£¬ÎïÌå½øÈëCDHGÇøÓò£¬×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍλÒƹ«Ê½½áºÏÇó³öʱ¼ä£¬ÔÙÇó³ö×Üʱ¼ä£®
£¨3£©ÎïÌå´ÓDH±ß½çÉä³öʱºá×ø±êΪ3L£®¸ù¾ÝÎïÌåÔÚÈý¸öÇøÓòÄÚÊúÖ±·½ÏòµÄÆ«ÒÆÁ¿£¬Çó³ö×Ý×ø±ê£®
½â´ð ½â£ºÉèÈý¸öÇøÓòµÄµç³¡Ç¿¶È´óСÒÀ´ÎΪ2E¡¢E¡¢2E£¬ÎïÌåÔÚÈý¸öÇøÓòÔ˶¯µÄʱ¼ä·Ö±ðt1¡¢t2¡¢t3£®
£¨1£©ÔÚBCGFÇøÓò£¬¶ÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
mg-qE=ma2£¬
¶ø£º2qE=mg
µÃ£ºa2=$\frac{g}{2}$
ÔÚˮƽ·½ÏòÓУºL=v0t
ÔÚÊúÖ±·½ÏòÓУº$\frac{L}{2}$=$\frac{1}{2}$a2${t}_{2}^{2}$
½âµÃ£ºv0=$\sqrt{\frac{gL}{2}}$£¬t2=$\sqrt{\frac{2L}{g}}$
£¨2£©ÔÚABEFÇøÓò£®¶ÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬ÔÚÊúÖ±·½ÏòÓУº2qE=mg
ÎïÌå×öÔÈËÙÖ±ÏßÔ˶¯£¬ÓУºv0=$\sqrt{\frac{gL}{2}}$£¬t1=t2=$\sqrt{\frac{2L}{g}}$
ÔÚBCGFÇøÓò£¬ÎïÌå×öÀàƽÅ×Ô˶¯£¬ÓУºv0=$\sqrt{\frac{gL}{2}}$£¬t2=$\sqrt{\frac{2L}{g}}$
ÔÚQµãÊúÖ±·½ÏòËÙ¶ÈΪ£ºvy=a2t2=$\sqrt{\frac{gL}{2}}$=v0£¬
ÔòQµãËÙ¶ÈΪ£ºvQ=$\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}$=$\sqrt{gL}$£¬Óëˮƽ·½Ïò¼Ð½ÇΪ45¡ã
ÔÚCDHGÇøÓò ÓÉÓÚ2qE=mg
¶ÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬F=$\sqrt{2}$mg£¬Óëˮƽ·½Ïò¼Ð½ÇΪ45¡ã£¬ÓëËٶȷ½ÏòÏàͬ£¬ÎïÌå×öÔȼÓËÙÖ±ÏßÔ˶¯£®
Ô˶¯µ½XÖá¹ý³Ì£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½£¬ÓУº$\frac{\sqrt{2}L}{2}$=vQt3+$\frac{1}{2}$a3${t}_{3}^{2}$
½âµÃ£ºt3=£¨2-$\sqrt{2}$£©$\sqrt{\frac{L}{g}}$
ËùÒÔÓУºt=t1+t2+t3=£¨2+$\sqrt{2}$£©$\sqrt{\frac{L}{g}}$
£¨3£©ÎïÌåÔÚABFEÇøÓò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚBCGFÇøÓòÎïÌå×öÀàƽÅ×Ô˶¯£¬Æ«ÒÆÁ¿Îª$\frac{L}{2}$£®
ÔÚCDHGÇøÓò£¬ÑØÓëˮƽ·½Ïò¼Ð½ÇΪ45¡ã£¬ÎïÌå×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÊúÖ±·½ÏòλÒÆΪL£¬ÔòÎïÌå´ÓDH±ß½çÉä³öλÖõÄ×ø±êΪ£¨3L£¬-$\frac{L}{2}$£©£®
´ð£º£¨1£©ÎïÌå½øÈëABFEÇøÓòʱµÄ³õËٶȴóСΪ$\sqrt{\frac{gL}{2}}$£»
£¨2£©ÎïÌåÔÚADHEÇøÓòÔ˶¯µÄ×Üʱ¼äΪΪ£¨2+$\sqrt{2}$£©$\sqrt{\frac{L}{g}}$£»
£¨3£©ÎïÌå´ÓDH±ß½çÉä³öλÖõÄ×ø±êΪ£¨3L£¬-$\frac{L}{2}$£©£®
µãÆÀ ´ËÌâÊÇ´øµçÌåÔڵ糡ºÍÖØÁ¦³¡µÄ¸´ºÏ³¡ÖÐÔ˶¯µÄÎÊÌ⣬¹Ø¼üÊÇ·ÖÎöÎïÌåµÄÊÜÁ¦Çé¿öºÍÔ˶¯Çé¿ö£®ÀàƽÅ×Ô˶¯ÔËÓÃÔ˶¯µÄºÏ³ÉÓë·Ö½âµÄ·½·¨Ñо¿£¬ÔȼÓËÙÖ±ÏßÔ˶¯¸ù¾ÝÅ£¶Ù¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½áºÏÑо¿£®
A£® | ³õËÙ¶Èv1£¾v2 | |
B£® | ÈôÁ½ÇòͬʱÅ׳ö£¬ÔòÁ½ÇòÒ»¶¨ÏàÓö | |
C£® | ÈôAÏÈÅ׳ö£¬BºóÅ׳ö£¬ÔòÁ½Çò¿ÉÄÜÏàÓö | |
D£® | ÈôÁ½ÇòÄÜÏàÓö£¬Ôò´ÓÅ׳öµ½ÏàÓöµÄ¹ý³ÌÖÐÁ½ÇòµÄËٶȱ仯Ïàͬ |
A£® | ÏòÇ°Çãµ¹ | B£® | ÏòºóÇãµ¹ | ||
C£® | ÏòתÍäµÄÍâ²àÇãµ¹ | D£® | ÏòתÍäµÄÄÚ²àÇãµ¹ |
£¨1£©µç»ð»¨¼ÆʱÆ÷Õý³£¹¤×÷ʱ£¬Æä´òµãµÄÖÜÆÚÈ¡¾öÓÚB
A£® ½»Á÷µçѹµÄ¸ßµÍ B£® ½»Á÷µçµÄƵÂÊ C£® Ä«·ÛÖ½Å̵ĴóС¡¡ D£® Ö½´øµÄ³¤¶È
£¨2£©¸ù¾Ý´òµã¼ÆʱÆ÷´ò³öµÄÖ½´ø£¬ÎÒÃÇ¿ÉÒÔÖ±½ÓµÃµ½µÄÎïÀíÁ¿ÊÇA
A£®Ê±¼ä¼ä¸ô B£®¼ÓËÙ¶È C£®Ë²Ê±ËÙ¶È D£®Æ½¾ùËÙ¶È
£¨3£©¸ù¾ÝÖ½´øÉϸ÷¸ö²âÁ¿µã¼äµÄ¾àÀ룬ijͬѧÒѽ«1¡¢2¡¢3¡¢5µã¶ÔÓ¦µÄʱ¿ÌµÄ˲ʱËٶȽøÐмÆËã²¢ÌîÈë±íÖУ¬ÇëÄ㽫4µã¶ÔÓ¦µÄʱ¿ÌµÄ˲ʱËÙ¶ÈÌîÈë±íÖУ»£¨ÒªÇó±£Áô3λÓÐЧÊý×Ö£©
˲ʱËÙ¶È | v1 | v2 | v3 | v4 | v5 |
ÊýÖµ£¨m/s£© | 0.165 | 0.214 | 0.263 | 0.363 |
£¨5£©ÓÉͼÏóÇó³öС³µµÄ¼ÓËÙ¶Èa=0.5m/s2£¨ÒªÇó±£Áô1λÓÐЧÊý×Ö£©£®ÈôÔÚij´ÎʵÑéÖУ¬½»Á÷µçµÄƵÂÊÆ«Àë50Hz£¬Éèf£¾50Hz£¬Ôò²âÁ¿µÄ¼ÓËÙ¶ÈÖµÓëÕæʵֵÏà±ÈÊÇƫС©vÌîÆ«´ó£¬ÏàµÈ»òƫС£©£®
A£® | $\frac{2¦Ðr}{3v}$ | B£® | $\frac{2\sqrt{3}¦Ðr}{3v}$ | C£® | $\frac{¦Ðr}{3v}$ | D£® | $\frac{\sqrt{3}¦Ðr}{3v}$ |