ÌâÄ¿ÄÚÈÝ
ÓÃÈçͼËùʾװÖÃÀ´ÑéÖ¤¶¯Á¿Êغ㶨ÂÉ£¬ÖÊÁ¿ÎªmBµÄ¸ÖÇòB·ÅÔÚС֧ÖùNÉÏ£¬ÇòÐÄÀëµØÃæ¸ß¶ÈΪH£»ÖÊÁ¿ÎªmAµÄ¸ÖÇòAÓÃϸÏßË©ºÃÐü¹ÒÓÚOµã£¬µ±Ï¸Ïß±»ÀֱʱOµãµ½ÇòÐĵľàÀëΪL£¬ÇÒϸÏßÓëÊúÖ±ÏßÖ®¼ä¼Ð½Ç¦Á£»ÇòAÓɾ²Ö¹ÊÍ·Å£¬°Úµ½×îµÍµãʱǡÓëÇòB·¢ÉúÕýÅö£¬Åöײºó£¬AÇò°ÑÇáÖÊָʾÕëCÍÆÒƵ½ÓëÊúÖ±¼Ð½ÇΪ¦Â´¦£¬BÇòÂäµ½µØÃæÉÏ£¬µØÃæÉÏÆÌÓÐÒ»ÕŸÇÓи´Ð´Ö½µÄ°×Ö½D£¬ÓÃÀ´¼Ç¼ÇòBµÄÂäµã£®
£¨1£©ÎªÁ˱£Ö¤ÇòA°ÑÇòBµ¯³öºóÄܼÌÐøÏòÇ°°Ú¶¯£¬Ó¦¸ÃÂú×ãµÄ¹ØϵÊÇmA
£¨2£©ÓÃͼÖÐËùʾ¸÷¸öÎïÀíÁ¿µÄ·ûºÅ±íʾÅöײǰºóÁ½ÇòA¡¢BµÄ¶¯Á¿£¨ÉèÁ½ÇòA¡¢BÅöÇ°µÄ¶¯Á¿·Ö±ðΪPA¡¢PB£»Åöºó¶¯Á¿·Ö±ðΪ
¡¢
£©£¬ÔòPA=
=
=
£¨1£©ÎªÁ˱£Ö¤ÇòA°ÑÇòBµ¯³öºóÄܼÌÐøÏòÇ°°Ú¶¯£¬Ó¦¸ÃÂú×ãµÄ¹ØϵÊÇmA
´óÓÚ
´óÓÚ
mB£¨2£©ÓÃͼÖÐËùʾ¸÷¸öÎïÀíÁ¿µÄ·ûºÅ±íʾÅöײǰºóÁ½ÇòA¡¢BµÄ¶¯Á¿£¨ÉèÁ½ÇòA¡¢BÅöÇ°µÄ¶¯Á¿·Ö±ðΪPA¡¢PB£»Åöºó¶¯Á¿·Ö±ðΪ
P | ¡ä A |
P | ¡ä B |
mA
2gl(1-cos¦Á) |
mA
£»2gl(1-cos¦Á) |
P | ¡ä A |
mA
2gl(1-cos¦Â) |
mA
£»PB=2gl(1-cos¦Â) |
0
0
£»P | ¡ä B |
mBS
|
mBS
£®
|
·ÖÎö£º£¨1£©¸ù¾Ý¶¯Á¿ÊغãºÍÄÜÁ¿ÊغãÇó³öÅöºóAÇòµÄËٶȣ¬´Ó¶øÅжϳöAÇò¼ÌÐøÏòÇ°°Ú¶¯£¬Á½ÇòµÄÖÊÁ¿¹Øϵ£®
£¨2£©¸ù¾Ý»úеÄÜÊغãºÍƽÅ×Ô˶¯µÄ¹æÂÉÇó³öÅöÇ°ºÍÅöºóСÇòµÄËٶȣ¬´Ó¶øµÃ³ö¶¯Á¿µÄ´óС£®
£¨2£©¸ù¾Ý»úеÄÜÊغãºÍƽÅ×Ô˶¯µÄ¹æÂÉÇó³öÅöÇ°ºÍÅöºóСÇòµÄËٶȣ¬´Ó¶øµÃ³ö¶¯Á¿µÄ´óС£®
½â´ð£º½â£º£¨1£©ÔÚСÇòÅöײ¹ý³ÌÖÐˮƽ·½Ïò¶¯Á¿Êغ㶨ÂɹÊÓÐmAv0=mAv1+mBv2
ÔÚÅöײ¹ý³ÌÖж¯ÄÜÊغã¹ÊÓÐ
mAv02=
mAv12+
mBv22£®
½âµÃv1=
v0£®
ÒªÅöºóÈëÉäСÇòµÄËÙ¶Èv1£¾0£¬¼´mA-mB£¾0£¬mA£¾mB£®
£¨2£©¸ù¾Ý»úеÄÜÊغ㶨Âɵã¬mAgL£¨1-cos¦Á£©=
mAv02£¬½âµÃv0=
£¬ËùÒÔPA=mA
£®
¸ù¾Ý»úеÄÜÊغ㶨Âɵã¬mAgL(1-cos¦Â)¨T
mAv12£¬½âµÃv1=
£¬ËùÒÔPA¡ä=mA
£®
BÇòÅöײǰ¾²Ö¹£¬ËùÒÔPB=0£®
¸ù¾ÝH=
gt2µÃ£¬t=
£¬ÔòvB=
=S
£®
ËùÒÔPB¡ä=mBS
£®
¹Ê´ð°¸Îª£º£¨1£©´óÓÚ £¨2£©mA
£¬mA
£¬0 mBS
ÔÚÅöײ¹ý³ÌÖж¯ÄÜÊغã¹ÊÓÐ
1 |
2 |
1 |
2 |
1 |
2 |
½âµÃv1=
mA-mB |
mA+mB |
ÒªÅöºóÈëÉäСÇòµÄËÙ¶Èv1£¾0£¬¼´mA-mB£¾0£¬mA£¾mB£®
£¨2£©¸ù¾Ý»úеÄÜÊغ㶨Âɵã¬mAgL£¨1-cos¦Á£©=
1 |
2 |
2gL(1-cos¦Á) |
2gl(1-cos¦Á) |
¸ù¾Ý»úеÄÜÊغ㶨Âɵã¬mAgL(1-cos¦Â)¨T
1 |
2 |
2gL(1-cos¦Â) |
2gl(1-cos¦Â) |
BÇòÅöײǰ¾²Ö¹£¬ËùÒÔPB=0£®
¸ù¾ÝH=
1 |
2 |
|
S |
t |
|
ËùÒÔPB¡ä=mBS
|
¹Ê´ð°¸Îª£º£¨1£©´óÓÚ £¨2£©mA
2gl(1-cos¦Á) |
2gl(1-cos¦Â) |
|
µãÆÀ£º±¾Ì⿼²éÁ˶¯Á¿Êغ㶨ÂɺͻúеÄÜÊغ㶨ÂɵÄ×ÛºÏÔËÓã¬ÖªµÀAÇòÓëBÅöºó£¬AÇò¼ÌÐøÏòÇ°Ô˶¯£¬A¡¢BÁ½ÇòµÄÖÊÁ¿¹Øϵ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿