题目内容

(12分)如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.

(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q.

(1)电流大小,电流方向为b→a(2)
(3)

解析试题分析:(1)棒产生的感应电动势              

通过的电流大小,电流方向为b→a
(2)棒产生的感应电动势为,感应电流
棒受到的安培力大小,方向沿斜面向上    
根据牛顿第二定律 有 ,解得 
(3)导体棒最终静止,有 ,压缩量       
设整个过程回路产生的焦耳热为Q0,根据能量守恒定律有                                
电阻R上产生的焦耳热
考点:考查了牛顿第二定律与电磁学综合,能量守恒定律,焦耳定律

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网