题目内容

如图所示,质量为M=1Kg的长滑块B静止放在光滑的水平地面上,左边固定一劲度系数为K=8N/m且足够长的水平轻质弹簧,右侧有一不可伸长的轻绳连接于竖直墙壁上,细线所能承受的最大拉力为T=4N.现使一质量为m=2Kg,初速度为v0的小物体A,在滑块B上无摩擦地向左运动,而后压缩弹簧.(已知弹簧的弹性势能EP与弹簧的形变量x的关系:数学公式,K为弹簧的劲度系数)
(1)小物体A的速度v0满足什么条件,才能使细线被拉断.
(2)若小物体A的初速度数学公式,滑块B向左的最大加速度为多大.
(3)若小物体A离开滑块B时相对地面的速度为零,则小滑块的初速度v0为多大?

解:(1)设弹簧压缩量为x1时,绳被拉断,即
kx1=T①
压缩弹簧过程动能转化为弹性势能,依题意有

联立解得:
(2)设绳被拉断瞬时,小物体的速度为V1,有

绳断后长滑块加速,小物体减速,当两者速度相等时,弹簧压缩量最大为x2,长滑块有向左的最大加速度am,此过程动量守恒,有:
mv1=(M+m)v2
根据机械能守恒,有:

由牛顿第二定律得:kx2=Mam
联立①④⑤⑥⑦解得:=8m/s2.⑧
(3)要使小物体离开长滑块时相对地面速度为零,即弹簧恢复原长时小物体速度为零,此时长物块速度为v.在绳断开至弹簧恢复原长过程中,动量守恒,能量守恒,故有
Mv=mv1

联立①④⑨⑩解得m-M=
由于,必有m>M
所以小物体最后离开滑块时,相对地面速度恰好为零的条件是m>M且满足m-M=
代入数据解得m/s.
答:(1)小物体A的速度v0满足v0>1m/s,才能使细线被拉断.
(2)滑块B向左的最大加速度为8m/s2
(3)若小物体A离开滑块B时相对地面的速度为零,则小滑块的初速度v0
分析:(1)假设绳子不断,当滑块速度减为零时,弹性势能最大,弹力最大,绳子的张力最大,等于弹簧的弹力;然后根据机械能守恒定律和胡克定律列式求解;
(2)当滑块与长木板速度相等时,弹力最大,加速度最大;先求解出断开时滑块速度,然后根据动量守恒和机械能守恒定律列式联立求解出共同速度,得到最大加速度.
(3)滑块与长木板分离后,速度恰好为零,根据动量守恒定律和机械能守恒定律列式后联立求解即可.
点评:本题关键要分析清楚滑块和滑板的运动规律,能结合机械能守恒定律和动量守恒定律多次列式后联立分析,较难.
练习册系列答案
相关题目
(选修3-5)
(1)核能是一种高效的能源.
①在核电站中,为了防止放射性物质泄漏,核反应堆有三道防护屏障:燃料包壳,压力壳和安全壳(见图甲).结合图乙可知,安全壳应当选用的材料是
混凝土
混凝土


②图丙是用来监测工作人员受到辐射情况的胸章,通过照相底片被射线感光的区域,可以判断工作人员受到何种辐射.当胸章上1mm铝片和3mm铝片下的照相底片被感光,而铅片下的照相底片未被感光时,结合图2分析工作人员受到了
β
β
射线的辐射;当所有照相底片被感光时,工作人员受到了
γ
γ
射线的辐射.
(2)下列说法正确的是
A.卢瑟福的a粒子散射实验揭示了原子核有复杂的结构
B.受普朗克量子论的启发,爱因斯坦在对光电效应的研究中,提出了光子说
C.核反应方程
 
238
92
U→
 
234
90
Th+
 
4
2
He属于裂变
D.宏观物体的物质波波长非常小,极易观察到它的波动性
E.根据爱因斯坦质能方程,物体具有的能量和它的质量之间存在着正比关系
F.β衰变中产生的β射线实际上是原子的核外电子挣脱原子核的束缚而形成的
G.中子与质子结合成氘核的过程中需要吸收能量
H.升高放射性物质的温度,可缩短其半衰期
I.氢原子辐射出一个光子后,根据玻尔理论可知氢原子的电势能增大,核外电子的运动加速度增大
J.对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应
(3)如图所示,质量为M=2kg的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为MA=2kg的物体A(可视为质点).一个质量为m=20g的子弹以500m/s的水平速度迅即射穿A后,速度变为100m/s,最后物体A静止在车上.若物体A与小车间的动摩擦因数μ=0.5.(g取10m/s2
①平板车最后的速度是多大?
②全过程损失的机械能为多少?
③A在平板车上滑行的距离为多少?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网