题目内容

如图所示,A为位于一定高度处的质量为m的小球,B为位于水平地面上的质量为M的长方形空心盒子,盒子足够长,且M = 2m,盒子与地面间的动摩擦因数=0.2.盒内存在着某种力场,每当小球进入盒内,该力场将同时对小球和盒子施加一个大小为F=Mg、方向分别竖直向上和向下的恒力作用;每当小球离开盒子,该力F同时立即消失.盒子的上表面开有一系列略大于小球的小孔,孔间距满足一定的关系,使得小球进出盒子的过程中始终不与盒子接触.当小球A以v=1m/s的速度从孔1进入盒子的瞬间,盒子B恰以v0=6m/s的速度向右滑行.取重力加速度g=10m/s2,小球恰能顺次从各个小孔进出盒子.试求:

(1)小球A从第一次进入盒子到第二次进入盒子所经历的时间;
(2)盒子上至少要开多少个小孔,才能保证小球始终不与盒子接触;
(3)从小球第一次进入盒子至盒子停止运动的过程中,盒子通过的总路程.

(1)T=0.4s   (2)11个    (3)5.8m

解析试题分析:(1)A在盒子内运动时,根据牛顿第二定律有
解得 a = g
A在盒子内运动的时间      A在盒子外运动的时间 
A从第一次进入盒子到第二次进入盒子的时间
(2)小球在盒子内运动时,盒子的加速度=4m/s2   
小球在盒子外运动时,盒子的加速度
小球运动一个周期盒子减少的速度为
从小球第一次进入盒子到盒子停下,小球运动的周期数为
故要保证小球始终不与盒子相碰,盒子上的小孔数至少为2n+1个,即11个.
(3)小球第一次在盒内运动的过程中,盒子前进的距离为m
小球第一次从盒子出来时,盒子的速度m/s
小球第一次在盒外运动的过程中,盒子前进的距离为 =1m
小球第二次进入盒子时,盒子的速度m/s
小球第二次在盒子内运动的过程中,盒子前进的距离为 m
小球第二次从盒子出来时,盒子的速度 m/s
小球第二次在盒外运动的过程中,盒子前进的距离为 m
…………
分析上述各组数据可知,盒子在每个周期内通过的距离为一等差数列,公差d=0.12m.且当盒子停下时,小球恰要进入盒内,最后0.2s内盒子通过的路程为0.04m.
所以从小球第一次进入盒子至盒子停止运动的过程中,盒子通过的总路程为

考点:牛顿第二定律

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网