题目内容

“神州六号”飞船的成功飞行为我国在2010年实现探月计划--“嫦娥工程”获得了宝贵的经验.假设月球半径为R,月球表面的重力加速度为g0,飞船在距月球表面高度为3R的圆形轨道Ⅰ运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入月球近月轨道Ⅲ绕月球作圆周运动.求:
(1)飞船在轨道Ⅰ上的运行速率;
(2)飞船在轨道Ⅲ绕月球运行一周所需的时间.
(1)设月球的质量为M,飞船的质量为m,飞船绕月运动速度为V,飞船绕月运动向心力为F,
则据圆周运动向心力公式得 F=m
V2
(R+3R)

据万有引力充当向心力得 F=G
Mm
(R+3R)2

据月球表面重力充当向心力得 G
mM
R2
=mg0

联立①②③式解得 v=
1
2
g0R

故飞船在轨道Ⅰ上的运行速率为 v=
1
2
g0R

(2)设飞船在轨道Ⅲ绕飞船在轨道月球运行一周所需的时间为T,此时重力充当向心力
mg0=m(
T
)2R

T=2π
R
g0

故飞船在轨道Ⅲ绕月球运行一周所需的时间为
R
g0
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网