题目内容

精英家教网如图所示,用长为l的绝缘细线拴一个质量为m.带电量为+q的小球(可视为质点)后悬挂于O点,整个装置处于水平向右的匀速电场E中.将小球拉至悬线呈水平的位置A后,由静止开始将小球释放,小球从A点开始向下摆动,当悬线转过与竖直方向成300角到达位置C时,速度恰好为零.求:
(1)A.C两点的电势差UAC
(2)电场强度E大小;
(3)小球到达最低点B时,悬线对小球的拉力T.
分析:(1)小球从A到C的过程中,重力做正功mgLcos30°,电场力做功为qUAc,动能的变化量为零,根据动能定理求解电势差UAC
(2)根据电场强度与电势差的关系U=Ed求解场强.式中d是AC沿电场线方向的距离,d=L+Lcos60°.
(3)利用动能定理求出在B点的速度,再利用圆周运动的知识,即牛顿第二定律求拉力T.
解答:解:(1)以小球为研究对象,受重力、拉力和电场力,小球从A到C的过程中,由动能定理得:
mgLcos30+qUAC=0-0
解得:UAC=-
3
mgL
2q

(2)有几何关系可知,AC 沿电场方向的距离d=Lsin30°+L…①
由匀强电场场强E=
UCA
d
…②
又因为UAC=-UCA…③
联立①②③解之得:E=
mg
3
q
…④
(3)以小球从A到B为研究过程,设小球在B点的速度为v,拉力为T.
由动能定理得:mgL-EqL=
1
2
mv2
…⑤
小球在B点由牛顿第二定律得:T-mg=
mv2
L
…⑥
联立④⑤⑥解得:T=(3-
2
3
3
)mg
答:1)A.C两点的电势差UAC为-
3
mgL
2q

(2)电场强度E大小
mg
3
q

(3)小球到达最低点B时,悬线对小球的拉力为(3-
2
3
3
)mg.
点评:解决本题关键要掌握动能定理和电场力做功W=qU、电场强度与电势差的关系式U=Ed.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网